【題目】如圖1,已知平行四邊形ABCD頂點A的坐標(biāo)為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.

(1)求拋物線的表達式;

(2)設(shè)四邊形ABEF的面積為S,請求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

(3)如圖2,過點F作FMx軸,垂足為M,交直線AC于P,過點P作PNy軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.

【答案】(1)拋物線解析式為y=x2x+3;(2S=m32m≤6);(3)當(dāng)m=時,MN最小=

【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)和拋物線的特點確定出點D,然而用待定系數(shù)法確定出拋物線的解析式.(2)根據(jù)AD∥BC∥x軸,且AD,BC間的距離為3,BC,x軸的距離也為3Fm,6),確定出E,3),從而求出梯形的面積.(3)先求出直線AC解析式,然后根據(jù)FM⊥x軸,表示出點Pm,m+9),最后根據(jù)勾股定理求出MN=,從而確定出MN最大值和m的值.

試題解析:(1BC,D三點的拋物線y=ax2+bx+ca≠0)的頂點坐標(biāo)為(22),

C的橫坐標(biāo)為4,BC=4,

四邊形ABCD為平行四邊形,

∴AD=BC=4,

∵A2,6),

∴D66),

設(shè)拋物線解析式為y=ax﹣22+2,

D在此拋物線上,

∴6=a6﹣22+2,

∴a=

拋物線解析式為y=x﹣22+2=x2﹣x+3,

2∵AD∥BC∥x軸,且AD,BC間的距離為3,BC,x軸的距離也為3,Fm,6

∴E,3),

∴BE=,

∴S=AF+BE×3=m﹣2+×3=m﹣3

Fm6)是線段AD上,

∴2≤m≤6,

即:S=m﹣32≤m≤6).

3拋物線解析式為y=x2﹣x+3,

∴B03),C4,3),

∵A2,6),

直線AC解析式為y=﹣x+9

∵FM⊥x軸,垂足為M,交直線ACP

∴Pm,m+9),(2≤m≤6

∴PN=m,PM=﹣m+9,

∵FM⊥x軸,垂足為M,交直線ACP,過點PPN⊥y軸,

∴∠MPN=90°,

∴MN===

∵2≤m≤6

當(dāng)m=時,MN最小==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,點MN分別是AB、CD上兩點,點GAB、CD之間,連接MG、NG

1)如圖1,若GMGN,求∠AMG+∠CNG的度數(shù);

2)如圖2,若點PCD下方一點,MG平分∠BMPND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度數(shù);

3)如圖3,若點EAB上方一點,連接EMEN,且GM的延長線MF平分∠AME,NE平分∠CNG2MEN+∠MGN105°,求∠AME的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標(biāo)C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°AB=6cm,BC=8cmP從點A開始沿AB邊向B1cm/s的速度移動,點QB點開始沿BC邊向點C2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),

1)如果P、Q同時出發(fā),幾秒后,可使PBQ的面積為8平方厘米?

2)線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)七年級1班同學(xué)積極響應(yīng)陽光體育工程的號召,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從長跑、籃球、鉛球、立定跳遠中選一項進行訓(xùn)練,訓(xùn)練前后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表.

項目選擇情況統(tǒng)計圖訓(xùn)練后籃球定時定點投籃測試進球數(shù)統(tǒng)計表

進球數(shù)(個

8

7

6

5

4

3

人數(shù)

2

1

4

7

8

2

請你根據(jù)圖表中的信息回答下列問題:

(1)選擇長跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是_____%,該班共有同學(xué)_____人;

(2)求訓(xùn)練后籃球定時定點投籃人均進球數(shù);

(3)根據(jù)測試資料,訓(xùn)練后籃球定時定點投籃的人均進球數(shù)比訓(xùn)練之前人均進球數(shù)增加25%.請求出參加訓(xùn)練之前的人均進球數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量一個圓鐵環(huán)的半徑,某同學(xué)用了如下方法,將鐵環(huán)平放在水平桌面上,用有一個角為30°的直角三角板和刻度尺按如圖所示的方法得到相關(guān)數(shù)據(jù),進而求出鐵環(huán)半徑,若測得PA=5cm,則鐵環(huán)的半徑是_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A、B的坐標(biāo)分別為(6,0),(6,8).動點M、N分別從O、B同時出發(fā),以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NPBC,交AC于P,連接MP.已知動點運動了x秒.

(1)P點的坐標(biāo)為多少;(用含x的代數(shù)式表示)

(2)試求MPA面積的最大值,并求此時x的值;

(3)請你探索:當(dāng)x為何值時,MPA是一個等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點A順時針旋轉(zhuǎn)60°得到ADE,點C的對應(yīng)點E恰好落在BA的延長線上,DEBC交于點F,連接BD.下列結(jié)論不一定正確的是( 。

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACD中,∠ACD=60°,以AC為邊作等腰三角形ABCAB=AC,EF分別為邊CD、BC上的點,連結(jié)AE、AF、EF,∠BAC=EAF=60°

1)求證:ABF≌△ACE;

2)若∠AED=70°,求∠EFC的度數(shù);

3)請直接指出:當(dāng)F點在BC何處時,ACEF?

查看答案和解析>>

同步練習(xí)冊答案