【題目】如圖,在中,,,為的中點.的半徑為3,動點從點出發(fā)沿方向以每秒1個單位的速度向點運動,設運動時間為秒.
(1)當以為半徑的與相切時,求的值;
(2)探究:在線段上是否存在點,使得與直線相切,且與相外切?若存在,求出此時的值及相應的的半徑;若不存在,請說明理由.
【答案】(1)當或時,與相切;(2)存在,當或時,,與直線相切并且與相外切,理由見解析.
【解析】
(1)在△ABC中,根據(jù)AB=AC,M為BC中點得到AM⊥BC,在Rt△ABM中,AB=10,BM=8得到AM=6.然后分當⊙O與⊙A相外切與當⊙O與⊙A相內切兩種情況求得t值即可;
(2)分當點O在BM上運動時(0<t≤8)和當點O在MC上運動時(8<t≤16)兩種情況求得t值即可.
解:(1)在中,∵,為中點,
∴.
在中,,,∴.
當與相外切,
可得解得.
當與相內切,
可得解得,
∴當或時,與相切.
(2)存在.
當點在上運動時(),
可得解得,
此時半徑.
當點在上運動時()
可得解得.
此時半徑.
當或時,,與直線相切并且與相外切.
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售櫻桃,已知櫻桃的進價為15元/千克,如果售價為20元/千克,那么每天可售出250千克,如果售價為25元/千克,那么每天可獲利2000元,經(jīng)調查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間存在一次函數(shù)關系.
(1)求y與x之間的函數(shù)關系式;
(2)若櫻桃的售價不得高于28元/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,過D作⊙O的切線交BC于點E,EF⊥AB,垂足為F.
(1)求證:DE=BC;
(2)若AC=6,BC=8,求S△ACD:S△EDF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化為y=(x﹣h)2+k形式;
(2)并指出:拋物線的頂點坐標是 ,拋物線的對稱軸方程是 ,拋物線與x軸交點坐標是 ,當x 時,y隨x的增大而增大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.
(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;
(2)聯(lián)結PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
(3)聯(lián)結PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖2,與是兩個全等的等腰三角形,,分別與相交于點,.
(1)圖中有哪幾對不全等的相似三角形,請把他們表示出來;
(2)根據(jù)圖1兩位同學對圖形的探索,試探索之間的關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C是⊙O上的三個點,點D在BC的延長線上.有如下四個結論:①在∠ABC所對的弧上存在一點E,使得∠BCE=∠DCE;②在∠ABC所對的弧上存在一點E,使得∠BAE=∠AEC;③在∠ABC所對的弧上存在一點E,使得EO平分∠AEC;④在∠ABC所對的弧上任意取一點E(不與點A,C重合) ,∠DCE=∠ABO +∠AEO均成立.上述結論中,所有正確結論的序號是( )
A. ①②③ B. ①③④ C. ②④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com