如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷( 。
A.甲正確,乙錯(cuò)誤 B.乙正確,甲錯(cuò)誤
C.甲、乙均正確 D.甲、乙均錯(cuò)誤
C
【解析】首先證明△AOM≌△CON(ASA),可得MO=NO,再根據(jù)對角線互相平分的四邊形是平行四邊形可判定判定四邊形ANCM是平行四邊形,再由AC⊥MN,可根據(jù)對角線互相垂直的四邊形是菱形判定出ANCM是菱形;四邊形ABCD是平行四邊形,可根據(jù)角平分線的定義和平行線的定義,求得AB=AF,所以四邊形ABEF是菱形.
【解析】
甲的作法正確;
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAC=∠ACN,
∵MN是AC的垂直平分線,
∴AO=CO,
在△AOM和△CON中,,
∴△AOM≌△CON(ASA),
∴MO=NO,
∴四邊形ANCM是平行四邊形,
∵AC⊥MN,
∴四邊形ANCM是菱形;
乙的作法正確;
∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE.
∵AF∥BE,且AF=BE,
∴四邊形ABEF是平行四邊形,
∵AB=AF,
∴平行四邊形ABEF是菱形;
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)轉(zhuǎn)化思想(解析版) 題型:選擇題
如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,點(diǎn)D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是( 。
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)整式(解析版) 題型:解答題
古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10 …,這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16…,這樣的數(shù)稱為“正方形數(shù)”.
(1)第5個(gè)三角形數(shù)是 ,第n個(gè)“三角形數(shù)”是 ,第5個(gè)“正方形數(shù)”是 ,第n個(gè)正方形數(shù)是 ;
(2)經(jīng)探究我們發(fā)現(xiàn):任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.
例如:①4=1+3,②9=3+6,③16=6+10,④ ,⑤ ,….
請寫出上面第4個(gè)和第5個(gè)等式;
(3)在(2)中,請?zhí)骄康趎個(gè)等式,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)數(shù)的規(guī)律(解析版) 題型:選擇題
把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)用等式AM=(i,j)表示正奇數(shù)M是第i組第j個(gè)數(shù)(從左往右數(shù)),如A7=(2,3),則A2013=( 。
A.(45,77) B.(45,39)
C.(32,46) D.(32,23)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)展示定義、規(guī)則(解析版) 題型:解答題
如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個(gè)三角形為“好玩三角形”.
(1)請用直尺和圓規(guī)畫一個(gè)“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,tanA= ,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點(diǎn)C運(yùn)動,記點(diǎn)P經(jīng)過的路程為s.
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動過程中,有且只有一個(gè)△APQ能成為“好玩三角形”.請直接寫出tanβ的取值范圍.
(4)依據(jù)(3)的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動過程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)實(shí)數(shù)(解析版) 題型:填空題
將1、、、按右側(cè)方式排列.若規(guī)定(m,n)表示第m排從左向右第n個(gè)數(shù),則(7,3)所表示的數(shù)是 ;(5,2)與(20,17)表示的兩數(shù)之積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圓(解析版) 題型:填空題
如圖,已知⊙O的直徑AB=6,E、F為AB的三等分點(diǎn),M、N為上兩點(diǎn),且∠MEB=∠NFB=60°,則EM+FN= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)圓(解析版) 題型:選擇題
已知⊙O1的半徑是3cm,⊙O2的半徑是2cm,O1O2=cm,則兩圓的位置關(guān)系是( 。
A.相離
B.外切
C.相交
D.內(nèi)切
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014中考名師推薦數(shù)學(xué)四邊形綜合練習(xí)(解析版) 題型:解答題
如圖①,在平行四邊形ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B﹣A﹣D﹣A運(yùn)動,沿B﹣A運(yùn)動時(shí)的速度為每秒13個(gè)單位長度,沿A﹣D﹣A運(yùn)動時(shí)的速度為每秒8個(gè)單位長度.點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向運(yùn)動,速度為每秒5個(gè)單位長度.P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t(秒).連結(jié)PQ.
(1)當(dāng)點(diǎn)P沿A﹣D﹣A運(yùn)動時(shí),求AP的長(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點(diǎn)P沿B﹣A﹣D運(yùn)動過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B﹣A﹣D運(yùn)動過程中,當(dāng)線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時(shí)t的值.
(4)設(shè)點(diǎn)C、D關(guān)于直線PQ的對稱點(diǎn)分別為C′、D′,直接寫出C′D′∥BC時(shí)t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com