【題目】(舊知再現(xiàn))圓內(nèi)接四邊形的對角 .
如圖①,四邊形是的內(nèi)接四邊形,若,則 .
(問題創(chuàng)新)圓內(nèi)接四邊形的邊會有特殊性質(zhì)嗎?
如圖②,某數(shù)學興趣小組進行深入研究發(fā)現(xiàn):
證明:如圖③,作,交于點.
∵,
∴,
∴ 即 (請按他們的思路繼續(xù)完成證明)
(應用遷移)如圖④,已知等邊外接圓,點為 上一點,且,,求的長.
【答案】【舊知再現(xiàn)】互補, 110;【問題創(chuàng)新】見解析;【應用遷移】
【解析】
【重溫舊知】根據(jù)圓周角定理,得出,,化簡得出,利用等腰三角形的兩個底角相等和圓內(nèi)接四邊形對角互補,即可得;
【提出問題】所得等式兩邊加上ADBC,右邊變形后即可得證;
【應用遷移】由上題的結(jié)論,根據(jù)為等邊三角形,可得AB=AC=BC,代入化簡即可求出PA的長.
(1)如圖示:
連接OA,OC,根據(jù)圓周角定理,
則有:,
∴
∴圓內(nèi)接四邊形的對角互補;
∵,
∴在等腰三角形ABD中,
∴
(2)證明:如圖,
∵
∴,即,
又∵,
∴
∴,即
∴,
∴,
(3)
由(2)可知
∵是等邊三角形,
∴,
∴,
∴即.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,D是BC的中點,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.
(1)求證:△ABC~△FCD;
(2)若△DEF的面積為2,求△FCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若兩個一次函數(shù)的圖象與x軸交于同一點,則稱這兩個函數(shù)為一對“x牽手函數(shù)”,這個交點為“x牽手點”.
(1)一次函數(shù)y=x﹣1與x軸的交點坐標為 ;一次函數(shù)y=ax+2與一次函數(shù)y=x﹣1為一對“x牽手函數(shù)”,則a= ;
(2)已知一對“x牽手函數(shù)”:y=ax+1與y=bx﹣1,其中a,b為一元二次方程x2﹣kx+k﹣4=0的兩根,求它們的“x牽手點”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長分別為,,,…,的n個正方形依次放入△ABC中,則第n個正方形的邊長_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,3),點B在第一象限,∠OAB的平分線交x軸于點P,把△AOP繞著點A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,得到△ABD,連接DP.求:DP的長及點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)求P點的坐標(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達式,并求出面積S的最大值及相應的x值;
(3)設四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關(guān)系并說明理由;
(4)當x為何值時,△NPC是一個等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,對角線AC、BD相交于點O將其繞著點O順時針旋轉(zhuǎn)90°得到菱形A‘B’C‘D’.若AB=1,則旋轉(zhuǎn)前后兩菱形重疊部分圖形的周長為__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.
(1)從口袋中隨機取出一個球(不放回),接著再取出一個球,請用樹形圖或列表的方法求取出的兩個球一個是紅色球,一個是黃色球的概率;
(2)小明往該口袋中又放入m個紅色球和(m+2)個黃色球,再從口袋中隨機取出一個球,這個球是黃色球的概率為,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com