【題目】如圖,平面直角坐標(biāo)系中,矩形 OABC 的 頂 點 A(0,3),C(- 1,0). 將 矩 形 OABC 繞原點順時針旋轉(zhuǎn) 900,得到矩形 OA’B’C’.解答下列問題:
(1)求出直線 BB’的函數(shù)解析式;
(2)直線 BB’與 x 軸交于點 M、與 y 軸交于點N,拋物線 y = ax2+ bx + c 的圖象經(jīng)過點C、M、N,求拋物線的函數(shù)解析式.
(3)將△MON 沿直線 MN 翻折,點 O 落在點P 處,請你判斷點 P 是否在拋物線上,說明理由.
【答案】(1)y=-;(2)y=;(3)不在.
【解析】試題分析:本題考查二次函數(shù)的綜合應(yīng)用,其中涉及到的知識點有待定系數(shù)法求函數(shù)解析式和函數(shù)圖象上點的意義,矩形的性質(zhì)與面積,函數(shù)和方程之間的關(guān)系等.要熟練掌握才能靈活運用.
(1)根據(jù)四邊形OABC是矩形可知B(-1,3).根據(jù)旋轉(zhuǎn)的性質(zhì),得B′(3,1).
把B(-1,3),B′(3,1)代入y=mx+n中,利用待定系數(shù)法可解得y=-.
(2)由(1)得,N(0,),M(5,0).設(shè)二次函數(shù)解析式為y=a+bx+c,把C(-1,0),M(5,0),N(0,)代入得,利用待定系數(shù)法解得二次函數(shù)解析式為y=+2x+.
(3)過點O作OD⊥MN于點D,由M、N點的坐標(biāo),可求出ON、OM的值,進(jìn)而求得MN的值,然后可求得OD的值,進(jìn)而求出OP的值,得到P點的坐標(biāo),然后將P點的坐標(biāo)代入拋物線的解析式,即可判斷點P是否在拋物線上.
試題解析:(1)由題意得,B(,3),(3,1),
∴直線的解析式為;
(2)直線與軸的交點為M(5,0),
與軸的交點N(0,),
設(shè)拋物線的解析式為,
∵拋物線過點N,
∴,
∴,
∴拋物線的解析式為=;
(3)過點O作OD⊥MN于點D,
∵M(jìn)(5,0),N(0,),
∴ON=,OM=5,
∴MN=,
∴OD=,
∵將△MON沿直線MN翻折,點O落在點P處,
∴OP=,
∴P(2,4)代入拋物線的解析式,
點P不在拋物線上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知銳角∠AOB,射線OC不與OA,OB重合,OM,ON分別平分∠AOC,∠BOC.
(1)當(dāng)OC在∠AOB的內(nèi)部
①若∠BOC=50°,∠AOC=20°,求∠MON的大;
②若∠MON=30°,求∠AOB的大小;
(2)當(dāng)射線OC在∠AOB外部,且∠AOB=80°,請直接寫出∠MON的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山,國家倡導(dǎo)全民植樹。在今年3月12日植樹節(jié)當(dāng)天,某校七年級一班48名學(xué)生全部參加了植樹活動,男生每人栽種4株,女生每人栽種3株,全班共栽種170株。
(1)該班男、女生各為多少人?
(2)學(xué)校選擇購買甲、乙兩種樹苗,甲樹苗 ,乙樹苗 .如果要使購買樹苗的錢不超過1200元,那么最多可以購買甲樹苗多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,,以O為圓心,OC 為半徑的圓分別交AO,BC于點D,E,連接ED并延長交AC于點F.
(1)求證:AB是⊙O的切線;
(2)求的值。
(3)若⊙O的半徑為4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,點 C 在以 AB 為直徑的⊙O 上,點 D 在 AB 的延長線上,∠BCD =∠A.
(1)求證:CD 為⊙O 的切線;
(2)過點 C 作 CE⊥AB 于點 E.若 CE = 2,cos D =,求 AD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司到果品基地購買某種優(yōu)質(zhì)水果慰問醫(yī)務(wù)工作者,果品基地對購買量在3000kg以上(含3000kg)的顧客采用兩種銷售方案.甲方案:每千克9元,由基地送貨上門;乙方案:每千克8元,由顧客自己租車運回.已知該公司租車從基地到公司的運輸費用為5000元.
(1)分別寫出該公司兩種購買方案付款金額y(元)與所購買的水果量x(kg)之間的函數(shù)關(guān)系式.
(2)當(dāng)購買量在哪一范圍時,選擇哪種購買方案付款最少?并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的兩個實數(shù)根.
(1)是否存在實數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;
(2)求使(x1+1)(x2+1)為正整數(shù)的實數(shù)a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結(jié)論:①BE=DF;②∠AEB=75°;③CE=2;④S正方形ABCD=2+,其中正確答案是( )
A.①②B.②③C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點0 為Rt△ABC斜邊AB上的一點,以OA 為半徑的☉O與BC切于點D,與AC 交于點E,連接AD.
(1) 求證: AD平分∠BAC;
(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com