【題目】5G時(shí)代即將來臨,湖北省提出“建成全國領(lǐng)先、中部一流5G網(wǎng)絡(luò)”的戰(zhàn)略目標(biāo).據(jù)統(tǒng)計(jì),目前湖北5G基站的數(shù)量有1.5萬座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座.

(1)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率;

(2)2023年保持前兩年5G基站數(shù)量的年平均增長率不變,到2023年底,全省5G基站數(shù)量能否超過29萬座?

【答案】(1)2020年底到2022年底,全省5G基站數(shù)量的年平均增長率為70%(2)到2023年底,全省5G基站數(shù)量能超過29萬座.

【解析】

1)根據(jù)增長率問題:變化前的量×(1+x2=變化后的量,列出方程求解.

2)按照(1)中算出的增長率,計(jì)算2023年的基站數(shù),即可判斷.

1)設(shè)2020年底到2022年底,全省5G基站數(shù)量的年平均增長率為x,

依題意,得:1.5×4×(1+x217.34

解得:x10.770%,x2-2.7(舍去).

答:2020年底到2022年底,全省5G基站數(shù)量的年平均增長率為70%

2(萬座)

29.478萬座>29萬座

答:到2023年底,全省5G基站數(shù)量能超過29萬座.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy(如圖),已知拋物線y=﹣+bx+c(其中b、c是常數(shù))經(jīng)過點(diǎn)A(2,﹣2)與點(diǎn)B(0,4),頂點(diǎn)為M

1)求該拋物線的表達(dá)式與點(diǎn)M的坐標(biāo);

2)平移這條拋物線,得到的新拋物線與y軸交于點(diǎn)C(點(diǎn)C在點(diǎn)B的下方),且BCM的面積為3.新拋物線的對稱軸l經(jīng)過點(diǎn)A,直線lx軸交于點(diǎn)D

求點(diǎn)A隨拋物線平移后的對應(yīng)點(diǎn)坐標(biāo);

點(diǎn)EG在新拋物線上,且關(guān)于直線l對稱,如果正方形DEFG的頂點(diǎn)F在第二象限內(nèi),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

1)根據(jù)圖象信息,當(dāng)t   分鐘時(shí)甲乙兩人相遇,甲的速度為   /分鐘,乙的速度為   /分鐘;

2)圖中點(diǎn)A的坐標(biāo)為   ;

3)求線段AB所直線的函數(shù)表達(dá)式;

4)在整個(gè)過程中,何時(shí)兩人相距400米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為6,∠BAD=120°,點(diǎn)EAB的中點(diǎn),點(diǎn)FAC上的一動(dòng)點(diǎn),則EF+BF的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),,點(diǎn)A的坐標(biāo)是,,把繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)后,得到,則的外接圓圓心坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線yaxa為拋物線yax2+bx+ca、bc為常數(shù),a≠0)的夢想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢想三角形.已知拋物線y=﹣x2x+2與其夢想直線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的夢想直線的解析式為   ,點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   

2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACMAM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若△AMN為該拋物線的夢想三角形,求點(diǎn)N的坐標(biāo);

3)當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢想直線上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】418日,一年一度的風(fēng)箏節(jié)活動(dòng)在市政廣場舉行,如圖,廣場上有一風(fēng)箏A,小江抓著風(fēng)箏線的一端站在D處,他從牽引端E測得風(fēng)箏A的仰角為67°,同一時(shí)刻小蕓在附近一座距地面30米高(BC30)的居民樓頂B處測得風(fēng)箏A的仰角是45°,已知小江與居民樓的距離CD40米,牽引端距地面高度DE1.5米,根據(jù)以上條件計(jì)算風(fēng)箏距地面的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.

(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?

(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購買溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,由于四邊形具有不穩(wěn)定性,因此在同一平面推矩形的邊可以改變它的形狀(推移過程中邊的長度保持不變).已知矩形ABCD,AB4cm,AD3cm,固定邊AB,推邊AD,使得點(diǎn)D落在點(diǎn)E處,點(diǎn)C落在點(diǎn)F處.

1)如圖2,如果∠DAE30°,求點(diǎn)E到邊AB的距離;

2)如圖3,如果點(diǎn)A、E、C三點(diǎn)在同一直線上,求四邊形ABFE的面積.

查看答案和解析>>

同步練習(xí)冊答案