【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=2 ,D是BC的中點,將△OCD沿直線OD折疊后得到△OGD,延長OG交AB于點E,連接DE,則點G的坐標(biāo)為 .
【答案】( , )
【解析】解:過點G作GF⊥OA于點F,如圖所示.
∵點D為BC的中點,
∴DC=DB=DG,
∵四邊形OABC是矩形,
∴AB=OC,OA=BC,∠C=∠OGD=∠ABC=90°.
在Rt△DGE和Rt△DBE中, ,
∴Rt△DGE≌Rt△DBE(HL),
∴BE=GE.
設(shè)AE=a,則BE=3﹣a,DE= = ,OG=OC=3,
∴OE=OG++GE,即 =3+3﹣a,
解得:a=1,
∴AE=1,OE=5.
∵GF⊥OA,EA⊥OA,
∴GF∥EA,
∴ ,
∴OF= = = ,GF= = = ,
∴點G的坐標(biāo)為( , ).
故答案為:( , ).
本題考查了翻折變換、矩形的性質(zhì)、全等三角形的判定及性質(zhì)以及平行線的性質(zhì),解題的關(guān)鍵是求出線段AE的長度.本題屬于中檔題,難度不大,解決該題型題目時,利用勾股定理得出邊與邊之間的關(guān)系是關(guān)鍵.過點G作GF⊥OA于點F,根據(jù)全等直角三角形的判定定理(HL)證出Rt△DGE≌Rt△DBE,從而得出BE=GE,根據(jù)勾股定理可列出關(guān)于AE長度的方程,解方程可得出AE的長度,再根據(jù)平行線的性質(zhì)即可得出比例關(guān)系 ,代入數(shù)據(jù)即可求出點G的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為.
(1)若是“相伴數(shù)對”,求的值;
(2)寫出一個“相伴數(shù)對” ,其中且;
(3)若是“相伴數(shù)對”,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,BC邊上有10個不同的點P1,P2,……,P10, 記(i = 1,2,……,10),那么 M1+M2+……+M10的值為( )
A. 4 B. 14 C. 40 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為24厘米.甲、乙兩動點同時從頂點A出發(fā),甲以2厘米/秒的速度沿正方形的邊按順時針方向移動,乙以4厘米/秒的速度沿正方形的邊按逆時針方向移動,每次相遇后甲乙的速度均增加1厘米/秒且都改變原方向移動,則第四次相遇時甲與最近頂點的距離是______厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系xOy中,直線分別交x、y軸于點A、C,點B在x軸負(fù)半軸上,過點A作于點K,若,.
如圖1,求點B坐標(biāo);
如圖2,點P為AC延長線上一點,過點P作交直線BC于點Q,設(shè)點P的橫坐標(biāo)為t,PQ長為d,求d與t的函數(shù)關(guān)系式不必寫出自變量t的取值范圍;
在的條件下,連接OK,過點P作軸于點H,點F為HB上一點,連接PF,點D在PF上,將點F沿x軸正方向平移個單位到點G,連接DG,交PH于點E,若,,,求點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
求A種,B種樹木每棵各多少元?
因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價格不變的情況下不考慮其他因素,實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上三點M,O,N對應(yīng)的數(shù)分別為-1,0,3,點P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x.
(1)MN的長為 ;
(2)如果點P到點M、點N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點P,使點P到點M、點N的距離之和是8?若存在,直接寫出x的值;若不存在,請說明理由.
(4)如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點M、點N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的頂點坐標(biāo)分別是、、.
如果將向上平移1個單位長度,再向左平移2個單位長度,得到,直接寫出、的坐標(biāo),并求的面積;
求出線段AB在中的平移過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年在中央“房子是用來住的,不是用來炒”的精神作用下,房子價格持續(xù)下跌.玲玲家買了一套新房準(zhǔn)備裝修,若甲、乙兩個裝飾公司合作,需6周完成,共需裝修費為5.2萬元;若甲公司單獨做4周后,剩下的由乙公司來做,還需9周才能完成,共需裝修費為4.8萬元.玲玲的爸爸媽媽商量后決定只選一個公司單獨完成.
(1)如果從節(jié)約時間的角度考慮應(yīng)選哪家公司?
(2)如果從節(jié)約開支的角度考慮應(yīng)選哪家公司?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com