【題目】如圖,在菱形ABCD中,AC為對角線,點(diǎn)E,F分別在AB,AD上,BE=DF,連接EF.
(1)求證:AC⊥EF;
(2)延長EF交CD的延長線于點(diǎn)G,連接BD交AC于點(diǎn)O,若BD=4,tanG=,求AO的長.
【答案】(1)證明見解析;(2)AO=1。
【解析】
(1)由菱形的性質(zhì)得出AB=AD,AC平分∠BAD,再根據(jù)等腰三角形的三線合一即可;
(2)根據(jù)菱形的性質(zhì)和已知條件得出四邊形EBDG為平行四邊形,得出∠G=∠ABD,再根據(jù)tanG=即可求出AO的長.
(1)證明:∵四邊形ABCD為菱形 ∴AB=AD,AC平分∠BAD
∵BE=DF, ∴ , ∴AE=AF
∴△AEF是等腰三角形, ∵AC平分∠BAD, ∴AC⊥EF
(2)解:如圖2所示:
∵四邊形ABCD為菱形,∴CG∥AB,BO=BD=2,∵EF∥BD
∴四邊形EBDG為平行四邊形,∴∠G=∠ABD,∴tan∠ABD=tan∠G=
∴tan∠ABD=,∴AO=1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC為等邊三角形,點(diǎn)O為AB邊上一點(diǎn),且BO=2AO=4,將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得△DEF,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=ax2﹣4ax﹣5(a>0).
(1)當(dāng)a=1時(shí),求拋物線與x軸的交點(diǎn)坐標(biāo)及對稱軸;
(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個(gè)定點(diǎn),并求出這兩個(gè)定點(diǎn)的坐標(biāo);
②將拋物線C1沿這兩個(gè)定點(diǎn)所在直線翻折,得到拋物線C2,直接寫出C2的表達(dá)式;
(3)若(2)中拋物線C2的頂點(diǎn)到x軸的距離為2,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點(diǎn)D在BC上,且CD=3DB,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則tan∠BED的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,運(yùn)載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于地面R處的雷達(dá)測得AR的距離是40km,仰角是30°,n秒后,火箭到達(dá)B點(diǎn),此時(shí)仰角是45°,則火箭在這n秒中上升的高度是_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于A點(diǎn),與y軸交于B點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿AO方向向點(diǎn)O勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為().
(1)寫出A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)的面積為S,試求出S與t之間的函數(shù)關(guān)系式,并求出當(dāng)t為何值時(shí),的面積最大;
(3)當(dāng)t為何值時(shí),以點(diǎn)A,P,Q為頂點(diǎn)的三角形與相似?并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),在下列結(jié)論中,不正確的是( 。
A.圖象必經(jīng)過點(diǎn)(4,)
B.圖象過第一、三象限
C.若x<-1,則y>-6
D.點(diǎn) 、是圖象上的兩點(diǎn), ,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當(dāng)t= 分鐘時(shí)甲乙兩人相遇,甲的速度為 米/分鐘,乙的速度為 米/分鐘;
(2)圖中點(diǎn)A的坐標(biāo)為 ;
(3)求線段AB所直線的函數(shù)表達(dá)式;
(4)在整個(gè)過程中,何時(shí)兩人相距400米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)分別為A(0,1),B(-1,0),C(0,-1),D(1,0).對于圖形M,給出如下定義:P為圖形M上任意一點(diǎn),Q為正方形ABCD邊上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最大值,那么稱這個(gè)最大值為圖形M的“正方距”,記作d(M).
(1)已知點(diǎn)E(0,4),
①直接寫出d(點(diǎn)E)的值;
②直線y=kx+4(k≠0)與x軸交于點(diǎn)F,當(dāng)d(線段EF)取最小值時(shí),求k的取值范圍;
(2)⊙T的圓心為T(7,t),半徑為1.若d(⊙T)<11,請直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com