【題目】如圖,已知半徑為2的⊙O與直線l相切于點A,點P是直徑AB左側半圓上的動點,過點P作直線l的垂線,垂足為C,PC與⊙O交于點D,連接PA、PB,設PC的長為x(2<x<4).
(1)當x= 時,求弦PA、PB的長度;
(2)當x為何值時,PDCD的值最大?最大值是多少?

【答案】
(1)解:∵⊙O與直線l相切于點A,且AB為⊙O的直徑,

∴AB⊥l,又∵PC⊥l,

∴AB∥PC,

∴∠CPA=∠PAB,

∵AB是⊙O的直徑,

∴∠APB=90°,又PC⊥l,

∴∠PCA=∠APB=90°,

∴△PCA∽△APB,

,即PA2=PCAB,

∵PC= ,AB=4,

∴PA= =

∴Rt△APB中,AB=4,PA= ,

由勾股定理得:PB= =


(2)解:過O作OE⊥PD,垂足為E,

∵PD是⊙O的弦,OE⊥PD,

∴PE=ED,

又∵∠CEO=∠ECA=∠OAC=90°,

∴四邊形OACE為矩形,

∴CE=OA=2,又PC=x,

∴PE=ED=PC﹣CE=x﹣2,

∴PD=2(x﹣2),

∴CD=PC﹣PD=x﹣2(x﹣2)=x﹣2x+4=4﹣x,

∴PDCD=2(x﹣2)(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,

∵2<x<4,

∴當x=3時,PDCD的值最大,最大值是2.


【解析】(1)由直線l與圓相切于點A,且AB為圓的直徑,根據(jù)切線的性質(zhì)得到AB垂直于直線l,又PC垂直于直線l,根據(jù)垂直于同一條直線的兩直線平行,得到AB與PC平行,根據(jù)兩直線平行內(nèi)錯角相等得到一對內(nèi)錯角相等,再由一對直角相等,利用兩對對應角相等的兩三角形相似可得出△PCA與△PAB相似,由相似得比例,將PC及直徑AB的長代入求出PA的長,在直角三角形PAB中,由AB及PA的長,利用勾股定理即可求出PB的長;(2)過O作OE垂直于PD,與PD交于點E,由垂徑定理得到E為PD的中點,再由三個角為直角的四邊形為矩形得到OACE為矩形,根據(jù)矩形的對邊相等,可得出EC=OA=2,用PC﹣EC的長表示出PE,根據(jù)PD=2PE表示出PD,再由PC﹣PD表示出CD,代入所求的式子中,整理后得到關于x的二次函數(shù),配方后根據(jù)自變量x的范圍,利用二次函數(shù)的性質(zhì)即可求出所求式子的最大值及此時x的取值.
【考點精析】通過靈活運用二次函數(shù)的最值和勾股定理的概念,掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:

港口

運費(元/臺)

甲庫

乙?guī)?/span>

A港

14

20

B港

10

8


(1)設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關系式,并寫出x的取值范圍;
(2)求出最低費用,并說明費用最低時的調(diào)配方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在1,2,3,4,5這五個數(shù)中,先任意選出一個數(shù)a,然后在余下的數(shù)中任意取出一個數(shù)b,組成一個點(a,b),求組成的點(a,b)恰好橫坐標為偶數(shù)且縱坐標為奇數(shù)的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△COD是△AOB繞點O順時針旋轉40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知第一象限內(nèi)的圖象是反比例函數(shù)y= 圖象的一個分支,第二象限內(nèi)的圖象是反比例函數(shù)y=﹣ 圖象的一個分支,在x軸的上方有一條平行于x軸的直線l與它們分別交于點A、B,過點A、B作x軸的垂線,垂足分別為C、D.若四邊形ABCD的周長為8且AB<AC,則點A的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)悉,2013年財政部核定海南省發(fā)行的60億地方政府“債券資金”,全部用于交通等重大項目建設.以下是60億“債券資金”分配統(tǒng)計圖:
(1)請將條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,a= , b=(都精確到0.1);
(3)在扇形統(tǒng)計圖中,“教育文化”對應的扇形圓心角的度數(shù)為°(精確到1°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)|﹣1|+(﹣2)2+(7﹣π)0﹣( 1
(2) ÷ × +

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,對角線AC、BD交于點O,AC⊥BD,E、F、G、H分別是AB、BC、CD、DA的中點.
(1)求證:四邊形EFGH是正方形;
(2)若AD=2,BC=4,求四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是(
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.

查看答案和解析>>

同步練習冊答案