【題目】如圖,在平面直角坐標(biāo)系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.
(1)求P點的坐標(biāo);
(2)若△POQ的面積為9,求k的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是半圓弧上一動點,連接PA、PB,過圓心O作交PA于點C,連接已知,設(shè)O,C兩點間的距離為xcm,B,C兩點間的距離為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.
下面是小東的探究過程,請補充完整:
通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù)
建立直角坐標(biāo)系,描出以補全后的表中各對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
結(jié)合畫出的函數(shù)圖象,解決問題:直接寫出周長C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F分別在BC,CD上,AE=AF,AC與EF相交于點G.下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當(dāng)∠DAF=15°時,△AEF為等邊三角形;④當(dāng)∠EAF=60°時,S△ABE=S△CEF.其中正確的是( 。
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,點P是BC邊上一點,連接AP交對角線BD于點E,.作線段AP的中垂線MN分別交線段DC,DB,AP,AB于點M,G,F,N.
(1)求證:;
(2)若,求.
(3)如圖2,在(2)的條件下,連接CF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,將矩形ABCD繞B逆時針旋轉(zhuǎn)30°后得到矩形GBEF,延長DA交FG于點H,則GH的長為( 。
A.8﹣4B.﹣4C.3﹣4D.6﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D的切線交BC于點E.
(1)求證:EB=EC;
(2)當(dāng)△ABC滿足什么條件時,四邊形ODEC是正方形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4,∠DAC的平分線交DC于點E,若點P、Q分別是AD和AE上的動點,則DQ+PQ的最小值( 。
A、2
B、4
C、
D、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“勻稱三角形”,這條中線為“勻稱中線”.
(1)如圖①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“勻稱三角形”.
①請判斷“勻稱中線”是哪條邊上的中線,
②求BC:AC:AB的值.
(2)如圖②,△ABC是⊙O的內(nèi)接三角形,AB>AC,∠BAC=45°,S△ABC=2,將△ABC繞點A逆時針旋轉(zhuǎn)45°得到△ADE,點B的對應(yīng)點為D,AD與⊙O交于點M,若△ACD是“勻稱三角形”,求CD的長,并判斷CM是否為△ACD的“勻稱中線”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能是來自太陽的輻射能量,對于地球上的人類來說,太陽能是對環(huán)境無任何污染的可再生能源,因此許多國家都在大力發(fā)展太陽能.如圖是2013﹣2017年我國光伏發(fā)電裝機容量統(tǒng)計圖.根據(jù)統(tǒng)計圖提供的信息,判斷下列說法不合理的是( 。
A.截至2017年底,我國光伏發(fā)電累計裝機容量為13078萬千瓦
B.2017年我國光伏發(fā)電新裝機容量占當(dāng)年累計裝機容量的50%
C.2013﹣2017年,我國光伏發(fā)電新增裝機容量的平均值約為2500萬千瓦
D.2013﹣2017年,我國光伏發(fā)電新增裝機容量先減少后增加
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com