【題目】如圖,從熱氣球C處測得地面A、B兩點(diǎn)的俯角分別為30°、45°,如果此時(shí)熱氣球C處的高度為200米,點(diǎn)A、B、C在同一直線上,則AB兩點(diǎn)間的距離是________米(結(jié)果保留根號(hào)).
【答案】200(+1)
【解析】
先根據(jù)從熱氣球C處測得地面A、B兩點(diǎn)的俯角分別為30°、45°可求出∠BCD與∠ACD的度數(shù),再由直角三角形的性質(zhì)求出AD與BD的長,根據(jù)AB=AD+BD即可得出結(jié)論.
∵從熱氣球C處測得地面A、B兩點(diǎn)的俯角分別為30°、45°,
∴∠BCD=90°﹣45°=45°,∠ACD=90°﹣30°=60°,
∵CD⊥AB,CD=200米,
∴△BCD是等腰直角三角形,
∴BD=CD=200米,
在Rt△ACD中,
∵CD=200米,∠ACD=60°,
∴AD=CDtan60°=200×=200(米),
∴AB=AD+BD=200+200=200(+1)米.
故答案為:200(+1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:多項(xiàng)式當(dāng)取某些實(shí)數(shù)時(shí),是完全平方式.
例如:時(shí),, 發(fā)現(xiàn): ;
時(shí),,發(fā)現(xiàn):;
時(shí),, 發(fā)現(xiàn):;
……
根據(jù)閱讀解答以下問題:
分解因式:
若多項(xiàng)式是完全平方式,則之間存在某種關(guān)系,用等式表示之間的關(guān)系:
在實(shí)數(shù)范圍內(nèi),若關(guān)于的多項(xiàng)式是完全平方式,求值.
求多項(xiàng)式:的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上小明用一副三角板進(jìn)行如下操作:把一副三角板中兩個(gè)直角的頂點(diǎn)重合,一個(gè)三角板固定不動(dòng),另一個(gè)三角板繞著重合的頂點(diǎn)旋轉(zhuǎn)(兩個(gè)三角板始終有重合部分).
(1)當(dāng)旋轉(zhuǎn)到如圖所示的位置時(shí),量出∠α=25°,通過計(jì)算得出∠AOD=∠BOC= ;
(2)通過幾次操作小明發(fā)現(xiàn),∠α≠25°時(shí).∠AOD=∠BOC仍然成立,請你幫他完成下面的說理過程.
理由:因?yàn)椤?/span>AOC=∠BOD= ;
所以,根據(jù)等式的基本性質(zhì)∠ ﹣∠COD=∠BOD﹣∠ ;
即∠AOD=∠ .
(3)小瑩還發(fā)現(xiàn)在旋轉(zhuǎn)過程中∠AOB和∠DOC之間存在一個(gè)不變的數(shù)量關(guān)系,請你用等式表示這個(gè)數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A是x軸負(fù)半軸上一個(gè)定點(diǎn),點(diǎn)P是函數(shù)上一個(gè)動(dòng)點(diǎn),軸于點(diǎn)B,當(dāng)點(diǎn)P的橫坐標(biāo)逐漸增大時(shí),四邊形OAPB的面積將會(huì)
A. 先增后減 B. 先減后增 C. 逐漸減小 D. 逐漸增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某廣場臺(tái)階(結(jié)合輪椅專用坡道)景觀設(shè)計(jì)的模型,以及該設(shè)計(jì)第一層的截面圖,第一層有十級(jí)臺(tái)階,每級(jí)臺(tái)階的高為0.15米,寬為0.4米,輪椅專用坡道AB的頂端有一個(gè)寬2米的水平面BC;《城市道路與建筑物無障礙設(shè)計(jì)規(guī)范》第17條,新建輪椅專用坡道在不同坡度的情況下,坡道高度應(yīng)符合以下表中的規(guī)定:
坡度 | 1:20 | 1:16 | 1:12 |
最大高度(米) | 1.50 | 1.00 | 0.75 |
(1)選擇哪個(gè)坡度建設(shè)輪椅專用坡道AB是符合要求的?說明理由;
(2)求斜坡底部點(diǎn)A與臺(tái)階底部點(diǎn)D的水平距離AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AC∥BD,請先作圖再解決問題.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)
①作BE平分∠ABD交AC于點(diǎn)E;
②在BA的延長線上截取AF=BA,連接EF;
(2)判斷△BEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com