【題目】已知拋物線.

1)當(dāng),時,求拋物線軸的交點(diǎn)個數(shù);

2)當(dāng)時,判斷拋物線的頂點(diǎn)能否落在第四象限,并說明理由;

3)當(dāng)時,過點(diǎn)的拋物線中,將其中兩條拋物線的頂點(diǎn)分別記為,,若點(diǎn),的橫坐標(biāo)分別是,且點(diǎn)在第三象限.以線段為直徑作圓,設(shè)該圓的面積為,求的取值范圍.

【答案】(1)拋物線軸有兩個交點(diǎn);(2)拋物線的頂點(diǎn)不會落在第四象限,理由詳見解析;(3.

【解析】

1)將,代入解析式,然后求當(dāng)y=0時,一元二次方程根的情況,從而求解;(2)首先利用配方法求出頂點(diǎn)坐標(biāo),解法一:假設(shè)頂點(diǎn)在第四象限,根據(jù)第四象限點(diǎn)的坐標(biāo)特點(diǎn)列不等式組求解;解法二:設(shè),,則,分析一次函數(shù)圖像所經(jīng)過的象限,從而求解;(3)將點(diǎn)代入拋物線,求得a的值,然后求得拋物線解析式及頂點(diǎn)坐標(biāo),分別表示出A,B兩點(diǎn)坐標(biāo),并根據(jù)點(diǎn)A位于第三象限求得t的取值范圍,利用勾股定理求得的函數(shù)解析式,從而求解.

解:(1)依題意,將,代入解析式

得拋物線的解析式為.

,得,,

拋物線軸有兩個交點(diǎn).

2)拋物線的頂點(diǎn)不會落在第四象限.

依題意,得拋物線的解析式為

頂點(diǎn)坐標(biāo)為.

解法一:不妨假設(shè)頂點(diǎn)坐標(biāo)在第四象限,

,解得.

該不等式組無解,

假設(shè)不成立,即此時拋物線的頂點(diǎn)不會落在第四象限.

解法二:設(shè),,則,

該拋物線的頂點(diǎn)在直線上運(yùn)動,而該直線不經(jīng)過第四象限,

拋物線的頂點(diǎn)不會落在第四象限.

3)將點(diǎn)代入拋物線,

,

化簡,得.

,即,

此時,拋物線的解析式為,

∴頂點(diǎn)坐標(biāo)為.

當(dāng)時,,.

當(dāng)時,,.

點(diǎn)在第三象限,

.

,

點(diǎn)在點(diǎn)的右上方,

.

,

當(dāng)時,的增大而增大,

.

.

,

的增大而增大,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)C1yax22ax3aa≠0)的圖象繞點(diǎn)Pm,0)旋轉(zhuǎn)180°,得到新函數(shù)C2的圖象,我們稱C2C1關(guān)于點(diǎn)P的相關(guān)函數(shù).C2的圖象的對稱軸與x軸交點(diǎn)坐標(biāo)為(t,0).

1)填空:t的值為   (用含m的代數(shù)式表示)

2)若a=﹣1,當(dāng)xt時,函數(shù)C1的最大值為y1,最小值為y2,且y1y21,求C2的解析式;

3)當(dāng)m0時,C2的圖象與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)).與y軸相交于點(diǎn)D.把線段AD原點(diǎn)O逆時針旋轉(zhuǎn)90°,得到它的對應(yīng)線段AD,若線ADC2的圖象有公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級學(xué)生某科目學(xué)期總評成績是由完成作業(yè)、單元檢測、期末考試三項(xiàng)成績構(gòu)成的,如果學(xué)期總評成績80分以上(含80分),則評定為優(yōu)秀,下表是小張和小王兩位同學(xué)的成績記錄:

完成作業(yè)

單元測試

期末考試

小張

70

90

80

小王

60

75

_______

若按完成作業(yè)、單元檢測、期末考試三項(xiàng)成績按127的權(quán)重來確定學(xué)期總評成績.

1)請計算小張的學(xué)期總評成績?yōu)槎嗌俜郑?/span>

2)小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax32+a≠0)過點(diǎn)C04),頂點(diǎn)為M,與x軸交于A,B兩點(diǎn).如圖所示以AB為直徑作圓,記作⊙D

1)試判斷點(diǎn)C與⊙D的位置關(guān)系;

2)直線CM與⊙D相切嗎?請說明理由;

3)在拋物線上是否存在一點(diǎn)E,能使四邊形ADEC為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+6x軸于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),交y軸于點(diǎn)C,頂點(diǎn)為D,對稱軸分別交x軸、線段AC于點(diǎn)EF

1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);

2)連結(jié)AD,CD,求ACD的面積;

3)設(shè)動點(diǎn)P從點(diǎn)D出發(fā),沿線段DE勻速向終點(diǎn)E運(yùn)動,取ACD一邊的兩端點(diǎn)和點(diǎn)P,若以這三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,且P為頂角頂點(diǎn),求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線交⊙O于點(diǎn)C,過點(diǎn)C作AE的垂線,垂足為D,直線DC與AB的延長線交于點(diǎn)P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;

(2)若tan∠P=,AD=6,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)下載一個APP,繳納一定數(shù)額的押金,就能以每小時0.51元的價格解鎖一輛自行車任意騎行最近的網(wǎng)紅非共享單車莫屬.共享單車為解決市民出行的最后一公里難題幫了大忙,人們在享受科技進(jìn)步、共享經(jīng)濟(jì)帶來的便利的同時,隨意停放、加裝私鎖、大卸八塊等毀壞單車的行為也層出不窮.某共享單車公司一月投入部分自行車進(jìn)入市場,一月底發(fā)現(xiàn)損壞率不低于10%,二月初又投入1200輛進(jìn)入市場,使可使用的自行車達(dá)到7500輛.

(1)一月份該公司投入市場的自行車至少有多少輛?

(2)二月份的損壞率達(dá)到20%,進(jìn)入三月份,該公司新投入市場的自行車比二月份增長4a%,由于媒體的關(guān)注,毀壞共享單車的行為引起了一場國民素質(zhì)的大討論,三月份的損壞率下降a%,三月底可使用的自行車達(dá)到7752輛,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),頂點(diǎn)為點(diǎn).

1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;(用含有的代數(shù)式表示)

2)連接.

①若平分,求二次函數(shù)的表達(dá)式;

②連接,若平分,求二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)M0,2)的直線lx軸平行,且直線l分別與反比例函數(shù)yx0)和yx0)的圖象分別交于點(diǎn)P,Q

1)求P點(diǎn)的坐標(biāo);

2)若POQ的面積為9,求k的值.

查看答案和解析>>

同步練習(xí)冊答案