【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點(diǎn)P,Q.
(1)求P點(diǎn)的坐標(biāo);
(2)若△POQ的面積為9,求k的值.
【答案】(1)(3,2);(2)k=﹣12
【解析】
(1)由于PQ∥x軸,則點(diǎn)P的縱坐標(biāo)為2,然后把y=2代入y=得到對(duì)應(yīng)的自變量的值,從而得到P點(diǎn)坐標(biāo);
(2)由于S△POQ=S△OMQ+S△OMP,根據(jù)反比例函數(shù)k的幾何意義得到|k|+×|6|=9,然后解方程得到滿足條件的k的值.
(1)∵PQ∥x軸,
∴點(diǎn)P的縱坐標(biāo)為2,
把y=2代入y=得x=3,
∴P點(diǎn)坐標(biāo)為(3,2);
(2)∵S△POQ=S△OMQ+S△OMP,
∴|k|+×|6|=9,
∴|k|=12,
而k<0,
∴k=﹣12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)當(dāng),時(shí),求拋物線與軸的交點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),判斷拋物線的頂點(diǎn)能否落在第四象限,并說明理由;
(3)當(dāng)時(shí),過點(diǎn)的拋物線中,將其中兩條拋物線的頂點(diǎn)分別記為,,若點(diǎn),的橫坐標(biāo)分別是,,且點(diǎn)在第三象限.以線段為直徑作圓,設(shè)該圓的面積為,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+6經(jīng)過點(diǎn)A(﹣3,0)和點(diǎn)B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F.
(1)求拋物線的解析式;
(2)連接AE,求h為何值時(shí),△AEF的面積最大.
(3)已知一定點(diǎn)M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某建筑物AC上,掛著一宣傳條幅BC,站在點(diǎn)F處,測得條幅頂端B的仰角為300,往條幅方向前行20米到達(dá)點(diǎn)E處,測得條幅頂端B的仰角為600,求宣傳條幅BC的長.(,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)過B點(diǎn)作BC⊥x軸,垂足為C,若P是反比例函數(shù)圖象上的一點(diǎn),連接PC,PB,求當(dāng)△PCB的面積等于5時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;
(3)四邊形AA2C2C的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=(x>0)的圖象與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BD=3AD,且△ODE的面積為30,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQ與BC交于點(diǎn)G,求△EBG的周長是__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.如圖,在△ABC中,AB>AC,點(diǎn)D,E分別在AB,AC上,設(shè)CD,BE相交于點(diǎn)O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com