【題目】如圖,是⊙的直徑,弦于點(diǎn),點(diǎn)是⊙上一點(diǎn),且,連接,于點(diǎn)

1)若,求⊙的半徑;

2)求證:為等腰三角形;

3)連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn),過點(diǎn)作⊙的切線,交的延長(zhǎng)線于點(diǎn).求證:

【答案】(1)⊙的半徑為5;(2)詳見解析;(3)詳見解析.

【解析】

(1)連接BC,AC,AD,通過證明△ACE∽△CEB,可得,可求BE的長(zhǎng),即可求⊙O的半徑;
(2)通過證明△ADE≌△NDE,可得∠DAN=∠DNA,即可證BN=BF,可得△BNF為等腰三角形;
(3)通過證明△ODE∽△ODM,可得DO2=OEOM,通過證明△PCO∽△CEO,可得CO2=POON,即可得結(jié)論.

解:(1)如圖1,連接,

是直徑

,

,且

∴⊙的半徑為5

2)∵

,且,

,

,

是等腰三角形

3)如圖2,連接

是切線,

,

,

,

,

∵四邊形是圓內(nèi)接四邊形

,且

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得_______________;

(Ⅱ)解不等式②,得_______________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來;

(Ⅳ)原不等式組的解集為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館推出了兩種收費(fèi)方式.

方式一:顧客先購(gòu)買會(huì)員卡,每張會(huì)員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費(fèi)30.

方式二:顧客不購(gòu)買會(huì)員卡,每次游泳付費(fèi)40.設(shè)小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費(fèi)用為y1(),選擇方式二的總費(fèi)用為y2().

(1)請(qǐng)分別寫出y1,y2x之間的函數(shù)表達(dá)式.

(2)小亮一年內(nèi)在此游泳館游泳的次數(shù)x在什么范圍時(shí),選擇方式一比方式二省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,直徑經(jīng)過弦的中點(diǎn),點(diǎn)上,的延長(zhǎng)線交于于點(diǎn),交過的直線于,,連接交于點(diǎn).

1)求證:的切線;

2)若點(diǎn)的中點(diǎn),的半徑為3,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】柳州市某校的生物興趣小組在老師的指導(dǎo)下進(jìn)行了多項(xiàng)有意義的生物研究并取得成果.下面是這個(gè)興趣小組在相同的實(shí)驗(yàn)條件下,對(duì)某植物種子發(fā)芽率進(jìn)行研究時(shí)所得到的數(shù)據(jù):

種子數(shù)

30

75

130

210

480

856

1250

2300

發(fā)芽數(shù)

28

72

125

200

457

814

1187

2185

發(fā)芽頻率

0.9333

0.9600

0.9615

0.9524

0.9521

0.9509

0.9496

0.9500

依據(jù)上面的數(shù)據(jù)可以估計(jì),這種植物種子在該實(shí)驗(yàn)條件下發(fā)芽的概率約是_____(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某小型汽車的側(cè)面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為60°時(shí),箱蓋ADE落在AD'E'的位置(如圖2所示).已知AD90厘米,DE30厘米,EC40厘米.

1)求點(diǎn)D'BC的距離;

2)求E、E'兩點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生到恩格貝和康鎮(zhèn)進(jìn)行研學(xué)活動(dòng),澄澄老師在網(wǎng)上查得,分別位于學(xué)校的正北和正東方向,位于南偏東37°方向,校車從出發(fā),沿正北方向前往地,行駛到15千米的處時(shí),導(dǎo)航顯示,在處北偏東45°方向有一服務(wù)區(qū),且位于,兩地中點(diǎn)處.

1)求兩地之間的距離;

2)校車從地勻速行駛1小時(shí)40分鐘到達(dá)地,若這段路程限速100千米/時(shí),計(jì)算校車是否超速?

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知□ABCD中,AE平分∠BADDCE,DFBCF,交AEG,且AD=DF.過點(diǎn)DDC的垂線,分別交AE、AB于點(diǎn)M、N.

(1)求證:AM=GE

(2)DG=aCF=b,AB的長(zhǎng).

(3),DG=,直接寫出CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“慈善一日捐”活動(dòng)中,為了解某校學(xué)生的捐款情況,抽樣調(diào)查了該校部分學(xué)生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計(jì)圖.

1)本次調(diào)查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;

2)求這組數(shù)據(jù)的平均數(shù);

3)該校共有學(xué)生參與捐款,請(qǐng)你估計(jì)該校學(xué)生的捐款總數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案