【題目】如圖,正方形ABCD的對角線上的兩個動點M、N,滿足AB=MN,點P是BC的中點,連接AN、PM,若AB=6,則當AN+PM取最小值時,線段AN的長度為( 。
A.4B.2C.6D.3
【答案】B
【解析】
過P作PE∥BD交CD于E,連接AE交BD于N,過P作PM∥AE交BD于M,此時,AN+PM的值最小,根據三角形的中位線的性質得到PE=BD,根據平行四邊形的性質得到EN=PM,根據勾股定理得到AE==3,根據相似三角形的性質即可得到結論.
過P作PE∥BD交CD于E,連接AE交BD于N,過P作PM∥AE交BD于M,此時,AN+PM的值最。
∵P是BC的中點,∴E為CD的中點,∴PE=BD.
∵AB=BD,AB=MN,∴MN=BD,∴PE=MN,∴四邊形PENM是平行四邊形,∴EN=PM.
∵AE==3.
∵AB∥CD,∴△ABN∽△EDN,∴==2,∴AN=2.
故選B.
科目:初中數學 來源: 題型:
【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2經過點A(﹣1,0),B(4,0),交y軸于點C;
(1)求拋物線的解析式;
(2)點D為y軸右側拋物線上一點,是否存在點D,使S△ABC=S△ABD?若存在,請求出點D坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A,B兩點(點A在點B的左側),且過點.
(1)直接寫出a的值和點B的坐標;
(2)將拋物線向右平移2個單位長度,所得的新拋物線與x軸交于M,N兩點,兩拋物線交于點P,求點M到直線PB的距離;
(3)在(2)的條件下,若點D為直線BP上的一個動點,是否存在點D,使得?若存在,請求出點D的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BE是⊙O的直徑,半徑OA⊥弦BC,垂足為D,連接AE、EC.
(1)若∠AEC=25°,求∠AOB的度數;
(2)若∠A=∠B,EC=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于下列說法:(1)反比例函數,在每個象限內隨的增大而減;(2)函數,隨的增大減;(3)函數,當時,隨的增大而減小,其中正確的有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標平面內,已知點的坐標,點位置如圖所示,點與點關于原點對稱。
(1)在圖中描出點;寫出圖中點的坐標:______________,點的坐標:_______________;
(2)畫出關于軸的對稱圖形,并求出四邊形的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,其中端點、均在小正方形的頂點上.
(1)在圖中畫出平行四邊形,點和點均在小正方形的頂點上,且平行四邊形的面積為12;
(2)在圖中畫出以為腰的等腰直角,且點在小正方形的頂點上;
(3)連接,直接寫出的正切值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】銳角△ABC中,BC=6,,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0).
(1)求△ABC中邊BC上高AD;
(2)當x為何值時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com