【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且過點(diǎn).
(1)直接寫出a的值和點(diǎn)B的坐標(biāo);
(2)將拋物線向右平移2個(gè)單位長度,所得的新拋物線與x軸交于M,N兩點(diǎn),兩拋物線交于點(diǎn)P,求點(diǎn)M到直線PB的距離;
(3)在(2)的條件下,若點(diǎn)D為直線BP上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)D,使得?若存在,請求出點(diǎn)D的坐標(biāo):若不存在,請說明理由.
【答案】(1),;(2);(3)D點(diǎn)坐標(biāo)為或.
【解析】
(1)將點(diǎn)(-2,4)代入y=a(x+5)(x3)即可求出a,根據(jù)拋物線解析式可直接得出點(diǎn)B的坐標(biāo);
(2)作于點(diǎn)C,連接MP,首先求出平移后的新拋物線解析式,得到點(diǎn)M、P的坐標(biāo),然后求出BP,利用S△PMB=×PB×MC=×MB×OP,即可求解;
(3)作BE平分交OP于E,作于F,根據(jù)求出,然后在中,可得,然后分情況討論:①點(diǎn)D在x軸上方,設(shè)AD交y軸于點(diǎn)H,根據(jù)求出點(diǎn)H的坐標(biāo),然后求得直線PB與直線AH的解析式,聯(lián)立即可求出點(diǎn)D的坐標(biāo),②點(diǎn)D在x軸下方,設(shè)AD交y軸于點(diǎn)K,同理可求點(diǎn)D的另一個(gè)坐標(biāo).
解:(1)將點(diǎn)代入得:,
解得:,
∵拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),
∴;
(2)作于點(diǎn)C,連接MP,
由題意得:將點(diǎn)向右平移2個(gè)單位得到點(diǎn)M為,
原拋物線解析式為,
則新拋物線解析式為,
聯(lián)立,解得:,
∴點(diǎn)P的坐標(biāo)為,
∵,,
∴,,,
∴,
∵S△PMB=×PB×MC=×MB×OP,
∴,
即點(diǎn)M到直線PB的距離為;
(3)存在符合題意的點(diǎn)D為或,
作BE平分交OP于E,作于F,
∵,
∴,
∵,
∴,
解得:,
∴在中,,
分兩種情況:
①如圖,點(diǎn)D在x軸上方,設(shè)AD交y軸于點(diǎn)H,
∵,
∴,即
∴,
∴點(diǎn)H坐標(biāo)為,
設(shè)直線PB的解析式為,
代入和得:,解得:,
∴直線PB的解析式為,
設(shè)直線AH的解析式為,
代入和得:,解得:,
∴直線AH的解析式為,
聯(lián)立,得,
∴直線AH與直線BP的交點(diǎn)坐標(biāo)為;
②如圖,點(diǎn)D在x軸下方,設(shè)AD交y軸于點(diǎn)K,
同①的方法可求得點(diǎn)D坐標(biāo)為,
綜上所述,存在滿足題目條件的D點(diǎn)坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi), 的三個(gè)頂點(diǎn)坐標(biāo)分別為 (2,-4), (4,-4), (1,-1).
(1)畫出關(guān)于軸對稱的,直接寫出點(diǎn)的坐標(biāo);
(2)畫出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后的;
(3)在(2)的條件下,求線段掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一種商品,童威經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的周銷售量(件)是售價(jià)(元/件)的一次函數(shù),其售價(jià)、周銷售量、周銷售利潤(元)的三組對應(yīng)值如下表:
售價(jià)(元/件) | 50 | 60 | 80 |
周銷售量(件) | 100 | 80 | 40 |
周銷售利潤(元) | 1000 | 1600 | 1600 |
注:周銷售利潤=周銷售量×(售價(jià)-進(jìn)價(jià))
(1)①求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)
②該商品進(jìn)價(jià)是_________元/件;當(dāng)售價(jià)是________元/件時(shí),周銷售利潤最大,最大利潤是__________元
(2)由于某種原因,該商品進(jìn)價(jià)提高了元/件,物價(jià)部門規(guī)定該商品售價(jià)不得超過65元/件,該商店在今后的銷售中,周銷售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若周銷售最大利潤是1400元,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+4x+5.
(1)用配方法將y=-x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo);
(3)若拋物線上有兩點(diǎn)A(x1,y1),B(x2,y2),如果x1>x2>2,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)P是內(nèi)切圓的圓心.將沿x軸的正方向作無滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合,第一次滾動(dòng)后圓心為,第二次滾動(dòng)后圓心為,…,依此規(guī)律,第2019次滾動(dòng)后,內(nèi)切圓的圓心的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場舉辦抽獎(jiǎng)活動(dòng),規(guī)則如下:在不透明的袋子中有2個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,顧客每次摸出一個(gè)球,若摸到紅球,則獲得1份獎(jiǎng)品,若摸到黑球,則沒有獎(jiǎng)品。
(1)如果小芳只有一次摸球機(jī)會(huì),那么小芳獲得獎(jiǎng)品的概率為 ;
(2)如果小芳有兩次摸球機(jī)會(huì)(摸出后不放回),求小芳獲得2份獎(jiǎng)品的概率。(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線上的兩個(gè)動(dòng)點(diǎn)M、N,滿足AB=MN,點(diǎn)P是BC的中點(diǎn),連接AN、PM,若AB=6,則當(dāng)AN+PM取最小值時(shí),線段AN的長度為( )
A.4B.2C.6D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標(biāo)系中的位置如圖所示,根據(jù)圖象回答下列問題:
(1)圖象的另一支在第________象限;在每個(gè)象限內(nèi),隨的增大而________;
(2)常數(shù)的取值范圍是________;
(3)若此反比例函數(shù)的圖象經(jīng)過點(diǎn),求的值.點(diǎn)是否在這個(gè)函數(shù)圖象上?點(diǎn)呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文藝復(fù)興時(shí)期,意大利藝術(shù)大師達(dá)芬奇曾研究過圓弧所圍成的許多圖形的面積問題. 如圖所示稱為達(dá)芬奇的“貓眼”,可看成圓與正方形的各邊均相切,切點(diǎn)分別為,所在圓的圓心為點(diǎn)(或). 若正方形的邊長為2,則圖中陰影部分的面積為( )
A. B. 2C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com