【題目】某汽車清洗店,清洗一輛汽車定價20元時每天能清洗45輛,定價25元時每天能清洗30輛,假設(shè)清洗汽車輛數(shù)(輛)與定價(元)(取整數(shù))是一次函數(shù)關(guān)系(清洗每輛汽車成本忽略不計).

1)求之間的函數(shù)表達(dá)式;

2)若清洗一輛汽車定價不低于15元且不超過50元,且該汽車清洗店每天需支付電費(fèi)、水費(fèi)和員工工資共計200元,問:定價為多少時,該汽車清洗店每天獲利最大?最大獲利多少?

【答案】1;(2)當(dāng)定價為17元或18元,汽車清洗店每天獲利最大,最大值為718

【解析】

1)利用待定系數(shù)法即可 求出yx的函數(shù)表達(dá)式;

2)列出利潤W關(guān)于定價x的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)及自變量x的范圍即可求出最大利潤.

解:(1)依題意,設(shè)的函數(shù)關(guān)系式為

則:,解得:

的函數(shù)關(guān)系式為:;

2)設(shè)利潤為元,

則由題意知:

∴拋物線開口向下

,且是整數(shù)

∴當(dāng)18時,(元)

即當(dāng)定價為17元或18元,汽車清洗店每天獲利最大,最大值為718.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:在圖(1)(2)所示拋物線中,拋物線與軸交于、,與軸交于,點(diǎn)是拋物線的頂點(diǎn),過平行于軸的直線是它的對稱軸,點(diǎn)在對稱軸上運(yùn)動。僅用無刻度的直尺畫線的方法,按要求完成下列作圖:

1)在圖①中作出點(diǎn),使線段最;

2)在圖②中作出點(diǎn),使線段最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=6,BC=10AE=2,連接BECE,線段CD上有一點(diǎn)H,將△EDH沿直線EH折疊,折疊后點(diǎn)D落在EC上的點(diǎn)D′處,若D′NAD于點(diǎn)N,與EH交于點(diǎn)M.則①△D′MH與△CBE都是等腰三角形;②∠BEH為直角;③DH長度為,④;以上說法正確的個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面坐標(biāo)系中,第1個正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)D的坐標(biāo)為(0,4),延長CBx軸于點(diǎn)A1,作第2個正方形A1B1C1C,延長C1B1x軸于點(diǎn)A2;作第3個正方形A2B2C2C1,按這樣的規(guī)律進(jìn)行下去,第5個正方形的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸、軸分別交于、兩點(diǎn),以為邊長在第一象限內(nèi)作正方形,若反比例函數(shù))的圖象經(jīng)過頂點(diǎn).

1)試確定的值;

2)若正方形向左平移個單位后,頂點(diǎn)恰好落在反比例函數(shù)的圖象上,試確定的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要修一個圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進(jìn)價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量箱與銷售價/箱之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式.

3)當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.

(1)①求的值;②求∠ACD的度數(shù).

(2)拓展探究

如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題

如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請直接寫出CD的長.

查看答案和解析>>

同步練習(xí)冊答案