【題目】已知矩形紙片OBCD的邊OBx軸上,ODy軸上,點C在第一象限,且.現(xiàn)將紙片折疊,折痕為EF(點EF是折痕與矩形的邊的交點),點P為點D的對應(yīng)點,再將紙片還原。

I)若點P落在矩形OBCD的邊OB上,

①如圖①,當(dāng)點E與點O重合時,求點F的坐標(biāo);

②如圖②,當(dāng)點EOB上,點FDC上時,EFDP交于點G,若,求點F的坐標(biāo):

(Ⅱ)若點P落在矩形OBCD的內(nèi)部,且點E,F分別在邊OD,邊DC上,當(dāng)OP取最小值時,求點P的坐標(biāo)(直接寫出結(jié)果即可)。

【答案】I)①點F的坐標(biāo)為;②點F的坐標(biāo)為;(II

【解析】

I根據(jù)折疊的性質(zhì)可得,再由矩形的性質(zhì),即可求出F的坐標(biāo);

②由折疊的性質(zhì)及矩形的特點,易得,得到,再加上平行,可以得到四邊形DEPF是平行四邊形,在由對角線垂直,得出 是菱形,設(shè)菱形的邊長為x,在中,由勾股定理建立方程即可求解;

()當(dāng)O,P,F點共線時OP的長度最短.

解:(I①∵折痕為EF,P為點D的對應(yīng)點

∵四邊形OBCD是矩形,

F的坐標(biāo)為

②∵折痕為EF,點P為點D的對應(yīng)點.

∵四邊形OBCD是矩形,

,

;

∴四邊形DEPF是平行四邊形.

是菱形.

設(shè)菱形的邊長為x,則

,

中,由勾股定理得

解得

∴點F的坐標(biāo)為

(Ⅱ)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半徑為2的O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點C是折疊后的上一動點,連接并延長BC交O于點D,點E是CD的中點,連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,ACBD相交于點O,AE平分BAD,交BCE,若EAO=15°,則BOE的度數(shù)為 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結(jié)AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮想趁暑假去看世博會,可是只有一張門票,誰都想去,最后商定通過轉(zhuǎn)盤游戲來決定.他們準(zhǔn)備了如圖所示兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤、,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標(biāo)上數(shù)字,游戲規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域的數(shù)字之和為時,小明去:數(shù)字之和為時,小亮去.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止)

用樹狀圖或列表法求小明去的概率;

這個游戲規(guī)則對小明、小亮雙方公平嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的內(nèi)接正十邊形的一邊,平分于點,則下列結(jié)論正確的有(

;②;③;④

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,∠B60°,點M從點B出發(fā)沿射線BC方向,在射線BC上運動.在點M運動的過程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊AMN,連結(jié)CN

1)當(dāng)∠BAM   °時,AB2BM

2)請?zhí)砑右粋條件:   ,使得ABC為等邊三角形;

①如圖1,當(dāng)ABC為等邊三角形時,求證:CN+CMAC;

②如圖2,當(dāng)點M運動到線段BC之外(即點M在線段BC的延長線上時),其它條件不變(ABC仍為等邊三角形),請寫出此時線段CN、CM、AC滿足的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】車間有20名工人,某一天他們生產(chǎn)的零件個數(shù)統(tǒng)計如下表:

生產(chǎn)零件的個數(shù)()

9

10

11

12

13

14

15

16

17

工人人數(shù)()

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實行“每天定額生產(chǎn),超產(chǎn)有獎”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進行分析,你將如何確定這個“定額”?

查看答案和解析>>

同步練習(xí)冊答案