精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD中,OBD中點,以BC為邊向正方形內作等邊BCE,連接AE并延長交CDF,連接BD分別交CE、AFG、H,下列結論:①;②;③;④;⑤,其中正確的是__________

【答案】①③⑤

【解析】

根據正方形的性質,等邊三角形的性質以及等腰三角形的性質可先求出∠BAE=BEA=CED=CDE=75°,進而可得出∠DEF=30°,從而可得出∠CEH=45°;

②作BMCGM,DNCGN,由,可以得出,就有BG=;

③先利用AAS證明△DEF≌△EDG,就可以得出DF=EG,就可以得出CG=CF,得出∠CGF=75°,由∠CED=75°,就可以得出GFED;

④由圖可知2OH+HD=2OD=BD,所以2OH+DH=BD錯誤;

⑤由SBECSBGC=,由GE=DF=tan15°AD.設AD=CD=BC=AB=x,就有DF=EG=2-xGC=x-2-x=-1x,就有.綜上可得出結論.

解:①∵四邊形ABCD是正方形,

AB=BC=CD=AD,∠ABC=BCD=CDA=DAB=90°,∠ADB=CDB=45°.

∵△BEC是等邊三角形,∴BC=BE=CE,∠EBC=BCE=BEC=60°,

AB=BE=CE=CD,∠ABE=DCE=90°-60°=30°,

∴∠BAE=BEA=CED=CDE=×(180°-30°)=75°,

∴∠EAD=EDA=15°,

∴∠DEF=30°,

∴∠CEH=45°.

故①正確;
②作BMCGM,DNCGN,

∴∠BMC=DNC=90°,

BM=sin60°BCDN=sin30°CD

,

BG=DG.

故②錯誤;

③∵∠EDC=75°,∠BDC=45°,

∴∠EDB=30°,

∴∠DEF=EDG=30°,

∴∠EGD=75°.

∵∠ADC=90°,∠DAF=15°,

∴∠EFD=75°,

∴∠EFD=EGD

在△DEF和△EDG中,,

∴△DEF≌△EDGAAS),

DF=EG

EC=DC,

EC-EG=DC-DF,

CG=CF

∴∠CGF=CFG=75°,

∴∠CED=CGF,

GFED

故③正確;

④由圖可知2OH+HD=2OD=BD,所以2OH+DH=BD不正確.故④錯誤;

⑤在RtADF中,∠DAF=15°,

DF=tan15°AD=GE,設AD=CD=BC=AB=x,

CE=x,∴CG=x-GE

又如補充圖中,在RtADF中,∠A=15°,在AD上取一點T,使得AT=TF,

∴∠DTF=30°,設DF=a,則TF=TA=2a,TD=a,可得tan15°=

GE=DF=2-x,

CG=x-2-x=-1x

SBECSBGC==

故⑤正確.

故正確的結論有:①③⑤.
故答案為:①③⑤.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖:已知銳角∠AOC,依次按照以下順序操作畫圖:

1)在射線OA上取一點B,以點O為圓心,OB長為半徑作,交射線OC于點D,連接BD

2)分別以點B,D為圓心,BD長為半徑作弧,交于點M,N;

3)連接ON,MN

根據以上作圖過程及所作圖形可知下列結論:①OC平分∠AON;②MNBD;③MN3BD;④若∠AOC30°,則MNON.其中正確結論的序號是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點P為△ABC邊上一動點,沿著ACB的路徑行進,點PPDAB,垂足為D,設ADx,△APD的面積為y,圖2y關于x的函數圖象,則依據圖中的數量關系計算△ACB的周長為(

A.B.15C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在半徑為,圓心角等于45°的扇形AOB內部作一個矩形CDEF,使點COA上,點D、EOB上,點F在弧AB上,且DE2CD,則:

1)弧AB的長是(結果保留π________;

2)圖中陰影部分的面積為(結果保留π________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從正五邊形的五個頂點中,任取四個頂點連成四邊形,則這個四邊形是等腰梯形的概率是( )

A.1B. C. D.0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y/千克,y關于x的函數解析式為 且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成木是18/千克,每天的利潤是W元(利潤=銷售收入﹣成本).

(1)m=   ,n=   

(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,的頂點 ,,,交軸于點

1)如圖①,求點的坐標;

2)如圖②:將線段繞點順時針旋轉后得線段,連接,求點的坐標;

3)如圖③, 軸正半軸上一動點, 在第二象限內,,且,過點垂直軸于點,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點在雙曲線上,點在雙曲線上,軸,過點軸于,連接,與相交于點,若,則的值為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】元旦大酬賓!”,某商場設計的促銷活動如下:在一個不透明的箱子里放有3張相同的卡片,卡片上分別標有“10、“20“30的字樣,規(guī)定:在本商場同一日內,顧客每消費滿300元,就可以在箱子里摸出一張卡片,記下錢數后放回,再從中摸出一張卡片.商場根據兩張卡片所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.

1)該顧客最多可得到   元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于40元的概率.

查看答案和解析>>

同步練習冊答案