【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.
【答案】解:連接AC,如圖所示:
∵∠B=90°,
∴△ABC為直角三角形,
又∵AB=3,BC=4,
∴根據(jù)勾股定理得:AC==5,
又∵CD=12,AD=13,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2 ,
∴△ACD為直角三角形,∠ACD=90°,
則S四邊形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×5×12=36.
故四邊形ABCD的面積是36.
【解析】連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.
科目:初中數(shù)學 來源: 題型:
【題目】一個多邊形中,除一個內(nèi)角外,其余各內(nèi)角和是120°,則這個角的度數(shù)是( )
A. 60° B. 80° C. 100° D. 120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)畫線段AC=30mm(點A在左側(cè));
(2)以C為頂點,CA為一邊,畫∠ACM=90°;
(3)以A為頂點,AC為一邊,在∠ACM的同側(cè)畫∠CAN=60°,AN與CM相交于點B;量得AB是多少mm?
(4)畫出AB中點D,連接DC,此時量得DC是多少mm?請你猜想AB與DC的數(shù)量關系是:AB是DC的多少倍?
(5)作點D到直線BC的距離DE,且量得DE等于多少mm?請你猜想DE與AC的數(shù)量關系是:DE和AC的數(shù)量關系是?,位置關系是?.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為( )
A. 115° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=6,AB=5,則AE的長為( 。
A.4
B.6
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南宋時期杰出的數(shù)學家楊輝是錢塘人,下面的圖表是他在《詳解九章算術(shù)》中記載的“楊輝三角”.此圖揭示了 ( 為非負整數(shù))的展開式的項數(shù)及各項系數(shù)的有關規(guī)律.
(1)請仔細觀察,填出(a+b)4的展開式中所缺的系數(shù).(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此規(guī)律還可以解決實際問題:假如今天是星期三,再過7天還是星期三,那么再過 天是星期 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交⊙O于點F,點F恰好落在弧AB的中點,連接AF并延長與CB的延長線相交于點G,連接OF.
(1)求證:OF=BG;
(2)若AB=4,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當E,F(xiàn)分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點E不是邊BC的中點,F(xiàn)不是邊CD的中點,且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎上,連接AE和EF,若點M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c圖象向右平移2個單位再向下平移3個單位,所得圖象的解析式為y=x2﹣2x﹣3,則b、c的值為( )
A.b=2,c=2
B.b=2,c=0
C.b=﹣2,c=﹣1
D.b=﹣3,c=2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com