精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,體育場內一看臺與地面所成夾角為30°,看臺最低點A到最高點B的距離為10,A,B兩點正前方有垂直于地面的旗桿DE.在AB兩點處用儀器測量旗桿頂端E的仰角分別為60°15°(仰角即視線與水平線的夾角)

1)求AE的長;

2)已知旗桿上有一面旗在離地1米的F點處,這面旗以0.5/秒的速度勻速上升,求這面旗到達旗桿頂端需要多少秒?

【答案】1AE的長為10米.

2)旗子到達旗桿頂端需要28秒.

【解析】試題分析:(1)先求得∠ABEAEB的度數,再利用等腰直角三角形即可求得AE;

2)解RT△ADE可得ED的長,進而可求得這面旗到達旗桿頂端需要的時間.

試題解析:(1BGCD,∴∠GBA=BAC=30°,又∵∠GBE=15°,∴∠ABE=45°,∵∠EAD=60°∴∠BAE=90°,∴∠AEB=45°,AB=AE=,故AE的長為米;

2)在RTADE中,sinEAD=DE==15,又DF=1,FE=14時間t==28(秒).故旗子到達旗桿頂端需要28秒.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A的坐標為(a,0),點C的坐標為(0,b)且ab滿足+|b6|0,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著OCBAO的線路移動.

1)點B的坐標為   ;當點P移動3.5秒時,點P的坐標為   ;

2)在移動過程中,當點Px軸的距離為4個單位長度時,求點P移動的時間;

3)在OCB的線路移動過程中,是否存在點P使△OBP的面積是10,若存在求出點P移動的時間;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,三角形ABC的位置如圖所示.

1)請寫出AB、C三點的坐標;

2)求△ABC的面積;

3)△ABC經過平移后得到△ABC′,已知△ABC內的任意一點Pxy)在△ABC′內的對應點P′的坐標為(x+6,y+2).請你寫出△ABC′各頂點的坐標并圖中畫出△ABC′.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近年來,青少年中的近視眼和肥胖案例日趨增多,人們普遍意識到健康的身體是學習的保障,所以體育活動越來越受重視.某商店分兩次購進跳繩和足球兩種商品進行銷售,每次購進同一種商品的進價相同,具體情況如下表所示.

購進數量()

購進所需費用()

跳繩

足球

第一次

30

40

3800

第二次

40

30

3200

(1)跳繩和足球兩種商品每件的進價分別是多少元?

(2)商店計劃用5300元的資金進行第三次進貨,共購進跳繩和足球兩種商品100件,其中要求足球的數量不少于跳繩的數量,有哪幾種進貨方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.

1B出發(fā)時與A相距______千米.

2B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是______小時.

3B出發(fā)后______小時與A相遇.

4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,______小時與A相遇,相遇點離B的出發(fā)點______千米.在圖中表示出這個相遇點C

5)求出A行走的路程S與時間t的函數關系式。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為了節(jié)約用水,對自來水的收費標準作如下規(guī)定:每月每戶用水不超過10噸的部分,按2/噸收費;超過10噸的部分按25/噸收費.

1)若黃老師家5月份用水16噸,問應交水費多少元?

2)若黃老師家7月用水a噸,問應交水費多少元?(用a的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某乒乓球的質量檢驗結果如下:

抽取的乒乓球數n

50

100

200

500

1000

1500

2000

優(yōu)等品的頻數m

48

95

188

x

948

1426

1898

優(yōu)等品的頻率(精確到0.001)

0.960

y

0.940

0.944

z

0.951

0.949

(1)根據表中信息可得:x=______y=______,z=______;

(2)從這批乒乓球中,任意抽取一只乒乓球是優(yōu)等品的概率的估計值是多少?(精確到0.01)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)求證:OEOF;

2)若CE8,CF6,求OC的長;

3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明在某一次實驗中,測得兩個變量之間的關系如下表所示:

自變量x

1

2

3

4

12

因變量y

12.03

5.98

3.04

1.99

1.00

請你根據表格回答下列問題:

① 這兩個變量之間可能是怎樣的函數關系?你是怎樣作出判斷的?請你簡要說明理由。

②請你寫出這個函數的解析式。

③表格中空缺的數值可能是多少?請你給出合理的數值。

查看答案和解析>>

同步練習冊答案