【題目】已知,中,邊上一點,作,分別交邊,于點,.

(1)若(如圖1),求證:.

(2)若,過點,交(或的延長線)于點.試猜想:線段,之間的數(shù)量關(guān)系,并就情形(如圖2)說明理由.

(3)若點重合(如圖3),,且.

①求的度數(shù);

②設(shè),,試證明:.

【答案】(1)證明見解析;(2)猜想:,理由見解析;(3)②證明見解析.

【解析】(1)根據(jù)平行線的判定,得到,,證明.即可證明.

(2)過點的平行線交的延長線于點,證明得到.

證明四邊形是平行四邊形,即可得到.

(3)①設(shè),,根據(jù)三角形的內(nèi)角和列出方程,求解即可.

②延長,使,連結(jié),證明 .根據(jù)相似三角形的性質(zhì)得到

,即可證明.

【解答】(1)∵,,,

,,

,,,

.

.

2)猜想:,理由如下:

過點的平行線交的延長線于點,

,

,

,

.

,

,

∴四邊形是平行四邊形,

.

3)①設(shè),

,

,

,即

,即.

②延長,使,連結(jié)

,.

,

,∴

,

,

.

,

.

,,,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度在河的南岸邊點A,測得河的北岸邊點B在其北偏東45°方向然后向西走60 m到達(dá)點C,測得點B在點C的北偏東60°方向,如圖②.

(1)求∠CBA的度數(shù);

(2)求出這段河的寬(結(jié)果精確到1 m,參考數(shù)據(jù):≈1.41,≈1.73).

       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩棵樹的高度分別為AB=6m,CD=8m,兩樹的根部間的距離AC=4m,小強(qiáng)正在距樹AB的20m的點P處從左向右前進(jìn),如果小強(qiáng)的眼睛與地面的距離為1.6m,當(dāng)小強(qiáng)前進(jìn)多少米時,就恰好不能看到CD的樹頂D?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用尺規(guī)在一個平行四邊形內(nèi)作菱形,下列作法中錯誤的是(

A. (A) B. (B) C. (C) D. (D)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,.

1)如圖①,在平面直角坐標(biāo)系中,以為頂點,為腰在第三象限作等腰,若,求點的坐標(biāo);

2)如圖②,軸負(fù)半軸上一個動點,以為頂點,為腰作等腰,過軸于點,當(dāng)點沿軸負(fù)半軸向下運動時,試問的值是否發(fā)生變化?若不變,求其值,若變化,請說明理由;

3)如圖③,已知點坐標(biāo)為,軸負(fù)半軸上一點,以為直角邊作等腰點在軸上,,設(shè)、,當(dāng)點在軸的負(fù)半軸上沿負(fù)方向運動時,的和是否發(fā)生變化?若不變,求其值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點AB,C,D,請按要求畫出圖形.

1)畫直線AB和射線CB;

2)連結(jié)AC,并在直線AB上用尺規(guī)作線段AE,使.(要求保留作圖痕跡)

3)在直線AB上確定一點P,使的和最短,并寫出畫圖的依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一鋼架,且,為使鋼架更加牢固,需在其內(nèi)部添加-一些鋼管、、,添加的鋼管都與相等,則最多能添加這樣的鋼管(

A.B.C.D.無數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(a),將兩塊直角三角尺的直角頂點C疊放在一起.

1)若∠DCE35°,∠ACB   ;若∠ACB140°,則∠DCE   ;并猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;

2)如圖(b),若是兩個同樣的三角尺60°銳角的頂點A重合在一起,則∠DAB與∠CAE的大小有何關(guān)系,請說明理由;

3)已知∠AOBα,∠CODβ(都是銳角),如圖(c),若把它們的頂點O重合在一起,請直接寫出∠AOD與∠BOC的大小相等的關(guān)系(用含有α,β的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點,與軸分別交于點,點.是直線上方的拋物線上一動點.

(1)求二次函數(shù)的表達(dá)式;

(2)連接,并把沿軸翻折,得到四邊形.若四邊形為菱形,請求出此時點的坐標(biāo);

(3)當(dāng)點運動到什么位置時,四邊形的面積最大?求出此時點的坐標(biāo)和四邊形的最大面積.

查看答案和解析>>

同步練習(xí)冊答案