【題目】已知,中,,是邊上一點,作,分別交邊,于點,.
(1)若(如圖1),求證:.
(2)若,過點作,交(或的延長線)于點.試猜想:線段,和之間的數(shù)量關(guān)系,并就情形(如圖2)說明理由.
(3)若點與重合(如圖3),,且.
①求的度數(shù);
②設(shè),,,試證明:.
【答案】(1)證明見解析;(2)猜想:,理由見解析;(3)①;②證明見解析.
【解析】(1)根據(jù)平行線的判定,得到,,證明.即可證明.
(2)過點作的平行線交的延長線于點,證明≌得到.
證明四邊形是平行四邊形,即可得到.
(3)①設(shè),,根據(jù)三角形的內(nèi)角和列出方程,求解即可.
②延長至,使,連結(jié),證明 .根據(jù)相似三角形的性質(zhì)得到
,即可證明.
【解答】(1)∵,,,
∴,,
∴,,,
∴.
∴.
(2)猜想:,理由如下:
過點作的平行線交的延長線于點,
則,
∵,
∴,
又,
∴≌∴.
∵,
∴,
∴四邊形是平行四邊形,
∴.
(3)①設(shè),
∵,,
∴,
又,即,
∴,即.
②延長至,使,連結(jié),
∵,.
∴ ,
∵,∴,
∴,
而,
∴.
∴,
∴.
∵,,,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸邊點B在其北偏東45°方向,然后向西走60 m到達(dá)點C,測得點B在點C的北偏東60°方向,如圖②.
(1)求∠CBA的度數(shù);
(2)求出這段河的寬(結(jié)果精確到1 m,參考數(shù)據(jù):≈1.41,≈1.73).
① ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩棵樹的高度分別為AB=6m,CD=8m,兩樹的根部間的距離AC=4m,小強(qiáng)正在距樹AB的20m的點P處從左向右前進(jìn),如果小強(qiáng)的眼睛與地面的距離為1.6m,當(dāng)小強(qiáng)前進(jìn)多少米時,就恰好不能看到CD的樹頂D?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用尺規(guī)在一個平行四邊形內(nèi)作菱形,下列作法中錯誤的是( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,.
(1)如圖①,在平面直角坐標(biāo)系中,以為頂點,為腰在第三象限作等腰,若,求點的坐標(biāo);
(2)如圖②,為軸負(fù)半軸上一個動點,以為頂點,為腰作等腰,過作軸于點,當(dāng)點沿軸負(fù)半軸向下運動時,試問的值是否發(fā)生變化?若不變,求其值,若變化,請說明理由;
(3)如圖③,已知點坐標(biāo)為,是軸負(fù)半軸上一點,以為直角邊作等腰,點在軸上,,設(shè)、,當(dāng)點在軸的負(fù)半軸上沿負(fù)方向運動時,的和是否發(fā)生變化?若不變,求其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A,B,C,D,請按要求畫出圖形.
(1)畫直線AB和射線CB;
(2)連結(jié)AC,并在直線AB上用尺規(guī)作線段AE,使.(要求保留作圖痕跡)
(3)在直線AB上確定一點P,使的和最短,并寫出畫圖的依據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一鋼架,且,為使鋼架更加牢固,需在其內(nèi)部添加-一些鋼管、、,添加的鋼管都與相等,則最多能添加這樣的鋼管( )
A.根B.根C.根D.無數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(a),將兩塊直角三角尺的直角頂點C疊放在一起.
(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,則∠DCE= ;并猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;
(2)如圖(b),若是兩個同樣的三角尺60°銳角的頂點A重合在一起,則∠DAB與∠CAE的大小有何關(guān)系,請說明理由;
(3)已知∠AOB=α,∠COD=β(都是銳角),如圖(c),若把它們的頂點O重合在一起,請直接寫出∠AOD與∠BOC的大小相等的關(guān)系(用含有α,β的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點,與軸分別交于點,點.點是直線上方的拋物線上一動點.
(1)求二次函數(shù)的表達(dá)式;
(2)連接,,并把沿軸翻折,得到四邊形.若四邊形為菱形,請求出此時點的坐標(biāo);
(3)當(dāng)點運動到什么位置時,四邊形的面積最大?求出此時點的坐標(biāo)和四邊形的最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com