【題目】如圖所示,在△ABC中,D是邊AB上一點(diǎn),E是邊AC的中點(diǎn),作CF∥AB交DE的延長(zhǎng)線于點(diǎn)F.
(1)證明:△ADE≌△CFE;
(2)若AB=AC,DB=2,CE=5,求CF.
【答案】(1)詳見解析;(2)8
【解析】
(1)根據(jù)AAS或ASA證明△ADE≌△CFE即可;
(2)由AB=AC,DB=2,CE=5可得AD的長(zhǎng),利用全等三角形的性質(zhì)求出CF=AD,即可解決問題.
解:(1)證明:∵E是邊AC的中點(diǎn),
∴AE=CE.
又∵CF∥AB,
∴∠A=∠ACF,∠ADF=∠F,
在△ADE與△CFE中,
∠A=∠ACF,∠ADF=∠F,AE=CE,
∴△ADE≌△CFE(AAS).
(2)∵CE=5,E是邊AC的中點(diǎn),
∴AE=CE=5,
∴AC=10,
∴AB=AC=10,
∴AD=AB﹣BD=10﹣2=8,
∵△ADE≌△CFE,
∴CF=AD=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,胡老師為了了解班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)某班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,胡老師一共調(diào)查了 名同學(xué),其中女生共有 ___名;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,胡老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年9月1日,長(zhǎng)春首屆航空開放日在長(zhǎng)春大房身機(jī)場(chǎng)正式舉行,空軍八一飛行表演隊(duì)的新?lián)Q裝殲-10飛機(jī),進(jìn)行了精彩的特技飛行表演,其中一架飛機(jī)起飛0.5千米后的高度變化如下表:
高度變化 | 上升4.2 | 下降3.5 | 上升1.4 | 下降1.2 |
記作 | +4.2 | -3.5 | +1.4 | -1.2 |
(1)此時(shí)這架飛機(jī)飛離地面的高度是多少千米?
(2)如果飛機(jī)做特技表演時(shí),有4個(gè)規(guī)定動(dòng)作,起飛后高度變化如下:上升3.6干米,下降2.8千米,再上升1.5千米,最后下降0.9千米.若飛機(jī)平均上升1干米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么這架飛機(jī)在這4個(gè)特技表演過程中,一共消耗了多少升燃油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M、N;②作直線MN交AB于點(diǎn)D,連接CD.若∠B=30°,∠A=55°,則∠ACD的度數(shù)為( 。
A. 65°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,6),點(diǎn)B在x軸的正半軸上.若點(diǎn)P、Q在線段AB上,且PQ為某個(gè)一邊與x軸平行的矩形的對(duì)角線,則稱這個(gè)矩形為點(diǎn)P、Q的“涵矩形”。下圖為點(diǎn)P、Q的“涵矩形”的示意圖.
(1)點(diǎn)B的坐標(biāo)為(3,0);
①若點(diǎn)P的橫坐標(biāo)為,點(diǎn)Q與點(diǎn)B重合,則點(diǎn)P、Q的“涵矩形”的周長(zhǎng)為 .
②若點(diǎn)P、Q的“涵矩形”的周長(zhǎng)為6,點(diǎn)P的坐標(biāo)為(1,4),則點(diǎn)E(2,1),F(1,2),G(4,0)中,能夠成為點(diǎn)P、Q的“涵矩形”的頂點(diǎn)的是 .
(2)四邊形PMQN是點(diǎn)P、Q的“涵矩形”,點(diǎn)M在△AOB的內(nèi)部,且它是正方形;
①當(dāng)正方形PMQN的周長(zhǎng)為8,點(diǎn)P的橫坐標(biāo)為3時(shí),求點(diǎn)Q的坐標(biāo).
②當(dāng)正方形PMQN的對(duì)角線長(zhǎng)度為/2時(shí),連結(jié)OM.直接寫出線段OM的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,∠ABC的平分線與邊CD的延長(zhǎng)線交于點(diǎn)E,與AD交于點(diǎn)F,且AF=DF,
①求證:AB=DE;
②若AB=3,BF=5,求△BCE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)由若干個(gè)排列整齊的數(shù)組成的正方形中,圖中任意一橫行、一縱行及對(duì)角線的幾個(gè)數(shù)之和都相等,具有這種性質(zhì)的圖表,稱為“幻方”,中國古代稱為“河圖”、“洛書”,又叫“縱橫圖”.3階幻方也稱九宮格,即把1,2,3,4,5,6,7,8,9九個(gè)數(shù)填入3×3方格中,使每一行,每一列以及兩條對(duì)角線上的數(shù)字之和都相等.請(qǐng)你將1,2,3,4,5,6,7,8,9填入下表的9個(gè)空格中,完成三階幻方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型超市從生產(chǎn)基地購進(jìn)一批水果,運(yùn)輸過程中質(zhì)量損失10%,假設(shè)不計(jì)超市其他費(fèi)用,如果超市要想至少獲得20%的利潤(rùn),那么這種水果的售價(jià)在進(jìn)價(jià)的基礎(chǔ)上應(yīng)至少提高【 】
A.40% B.33.4% C.33.3% D.30%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中t是不為零的實(shí)數(shù),其圖象記作拋物線L.現(xiàn)有點(diǎn)A(2,0)和拋物線L上的點(diǎn)B(﹣1,n),請(qǐng)完成下列任務(wù):
【嘗試】
(1)當(dāng)t=2時(shí),拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點(diǎn)坐標(biāo)為 ;
(2)判斷點(diǎn)A是否在拋物線L上;
(3)求n的值;
【發(fā)現(xiàn)】
通過(2)和(3)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線L總過定點(diǎn),坐標(biāo)為 .
【應(yīng)用】
二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個(gè)“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com