【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,0),m<0,點(diǎn)B與點(diǎn)A 關(guān)于原點(diǎn)對(duì)稱,直線與雙曲線交于C,D兩點(diǎn).
(1)直接判斷后填空:四邊形ACBD的形狀一定是 ;
(2)若點(diǎn)D(1,t),求雙曲線的解析式;
(3)在(2)的前提下,四邊形ACBD為矩形時(shí),求m的值.
【答案】(1)平行四邊形;(2);(3)m=-2
【解析】
(1)根據(jù)正、反比例函數(shù)的對(duì)稱性即可得出點(diǎn)D、C關(guān)于原點(diǎn)O成中心對(duì)稱,再結(jié)合點(diǎn)A與點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱,即可得出對(duì)角線AB、CD互相平分,由此即可證出四邊形ACBD的是平行四邊形;
(2)由點(diǎn)D的坐標(biāo)結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出t值,進(jìn)而得出點(diǎn)A的坐標(biāo),代入雙曲線即可求出解析式.
(3)根據(jù)勾股定理得出OD長(zhǎng)度,再根據(jù)矩形的性質(zhì)可得出OB=OA=OC=OD=2,得到點(diǎn)A的坐標(biāo)即可求出m值;
(1)平行四邊形;
(2)將D(1,t)代入中
求得:t= ,D(1,)
k=xy=1×=
∴反比例函數(shù)解析式是:
(3)由勾股定理求得OD=2,
∵四邊形ACBD為矩形
∴OA=OB=OC=OD=2
∵m<0
∴m=-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形中,,,的頂點(diǎn)在上,交直線于點(diǎn).
(1)如圖1,若,,連接,求的長(zhǎng).
(2)如圖2,,當(dāng)時(shí),求證:是的中點(diǎn);
(3)如圖3,若,對(duì)角線,交于點(diǎn),點(diǎn)關(guān)于的對(duì)稱點(diǎn)為點(diǎn),連接交于點(diǎn),連接、、,求的長(zhǎng),請(qǐng)直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級(jí)學(xué)生新冠疫情防控期間每天居家體育活動(dòng)的時(shí)間(單位:),在網(wǎng)上隨機(jī)調(diào)查了該校九年級(jí)部分學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖1和圖2.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的初中學(xué)生人數(shù)為________,圖①中的值為________;
(2)這組數(shù)據(jù)的平均數(shù)是________,眾數(shù)是________,中位數(shù)是________;
(3)根據(jù)統(tǒng)計(jì)的這組每天居家體育活動(dòng)時(shí)間的樣本數(shù)據(jù),估計(jì)該校500名九年級(jí)學(xué)生居家期間每天體育活動(dòng)時(shí)間大于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,M、N是對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),P是正方形四邊上的任意一點(diǎn),且,.關(guān)于下列結(jié)論:①當(dāng)△PAN是等腰三角形時(shí),P點(diǎn)有6個(gè);②當(dāng)△PMN是等邊三角形時(shí),P點(diǎn)有4個(gè);③DM+DN的最小值等于6.其中,一定正確的結(jié)論的序號(hào)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E為對(duì)角線AC上一點(diǎn),且AECB,連接DE并延長(zhǎng)交BC于點(diǎn)G,過點(diǎn)A作AH⊥BE于點(diǎn)H,交BC于點(diǎn)F.以下結(jié)論:①BHHE;②∠BEG45°;③△ABF ≌△DCG; ④4BH2BG·CD.其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2
C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將反比例函數(shù)y=(k>0)的圖象向左平移2個(gè)單位長(zhǎng)度后記為圖象c,c與y軸相交于點(diǎn)A,點(diǎn)P為x軸上一點(diǎn),點(diǎn)A關(guān)于點(diǎn)P的對(duì)稱點(diǎn)B在圖象c上,以線段AB為邊作等邊△ABC,頂點(diǎn)C恰好在反比例函數(shù)y=﹣(x>0)的圖象上,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,D為的中點(diǎn),過D作DF⊥AB于點(diǎn)E,交⊙O于點(diǎn)F,交弦BC于點(diǎn)G,連接CD,BF.
(1)求證:△BFG≌△DCG;
(2)若AC=10,BE=8,求BF的長(zhǎng);
(3)在(2)的條件下,P為⊙O上一點(diǎn),連接BP,CP,弦CP交直徑AB于點(diǎn)H,若△BPH與△CPB相似,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,四邊形是正方形,分別在邊、上,且,我們把這種模型稱為“半角模型”,在解決“半角模型”問題時(shí),旋轉(zhuǎn)是一種常用的方法.
(1)在圖l中,連接,為了證明結(jié)論“”,小亮將繞點(diǎn)順時(shí)針旋轉(zhuǎn)后解答了這個(gè)問題,請(qǐng)按小亮的思路寫出證明過程;
(2)如圖2,當(dāng)繞點(diǎn)旋轉(zhuǎn)到圖2位置時(shí),試探究與、之間有怎樣的數(shù)量關(guān)系?
(3)如圖3,如果四邊形中,,,,且,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=4,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AD邊上的一個(gè)動(dòng)點(diǎn),將△AEF沿EF所在直線翻折,得到△A'EF,連接A'C,A'D,則當(dāng)△A'DC是以A'D為腰的等腰三角形時(shí),FD的長(zhǎng)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com