【題目】如圖,點A在數(shù)軸上表示的數(shù)是﹣2,點B表示+6,P、Q兩點同時分別以1個單位/秒和3個單位/秒的速度從A、B兩點出發(fā),沿數(shù)軸規(guī)則運動
(1)求線段AB的長度;
(2)如果P、Q兩點在數(shù)軸上相向移動,問幾秒鐘后PQ=AB?
(3)如果P、Q兩點在數(shù)軸上同時沿數(shù)軸負半軸方向移動(Q在P的左側),若M、N分別是PA和BQ中點,問是否存在這樣的時間t,使得線段MN=AB?若存在,請求出t的值;若不存在,請說明理由.
【答案】(1)8;(2)1或3秒;(3)存在,t=6或10秒
【解析】
(1)由數(shù)軸上任意兩點間的距離等于這兩點表示的數(shù)的差的絕對值就可以得出結論;(2)設x秒鐘后PQ=AB,分情況討論,當點P在點Q的左側和點P在點Q的右側時分別建立方程求出其解即可;(3)當Q在P的左側時,t>4,M在A的左側,分情況討論,當點M在點N的左側和點M在點N的右側時分別建立方程求出其解即可.
(1)線段AB的長度是:6﹣(﹣2)=8
(2)設x秒鐘后PQ=AB.
分兩種情況討論:
①當點P在點Q的左側時,由題意得
x+3x=4,
解得x=1;
②當點P在點Q的右側時,由題意得
x+3x=8+4,
解得x=3;
答:1或3秒鐘后PQ=AB
(3)分兩種情況討論:
①當點M在點N的左側時,
∵MN=BM﹣BN=AB+AM﹣BN=8+t﹣t=8﹣t,
∴8﹣t=2,
解得t=6;
②當點M在點N的右側時,
∵MN=BN﹣BM=BN﹣AB﹣AM=t﹣8﹣t=t﹣8,
∴t﹣8=2,
解得t=10
答:存在t=6或10秒,使得線段MN=AB
科目:初中數(shù)學 來源: 題型:
【題目】已知有如下一組單項式:7x3z2,8x3y,x2yz,-3xy2z,9x4zy,zy2,-xyz,9y3z,xz2y,0,3z3.我們用下面的方法確定它們的先后次序:對任兩個單項式,先看x的指數(shù),規(guī)定x的指數(shù)高的單項式排在x的指數(shù)低的單項式前面;若x的指數(shù)相同,則再看y的指數(shù),規(guī)定y的指數(shù)高的單項式排在y的指數(shù)低的單項式前面;若y的指數(shù)也相同,則再看z的指數(shù),規(guī)定z的指數(shù)高的單項式排在z的指數(shù)低的單項式前面.將這組單項式按上述方法排序,那么,9y3z應排在第幾位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB:y=kx+2k交x軸于點A,交y軸正半軸于點B,且S△OAB=3
(1) 求A、B兩點的坐標
(2) 將直線AB繞A點順時針旋轉45°,交y軸于點C,求直線AC的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著經濟的發(fā)展,能源與環(huán)境已成為人們日益關注的問題.據(jù)統(tǒng)計,全球每年大約會產生近3億噸的塑料垃圾(例如平時用的礦泉水瓶子等)和約5億噸的廢鋼鐵(例如平時扔掉的易拉罐等),某中學為了培養(yǎng)學生的環(huán)保意識,開展了“環(huán)境保護,從我做起”的主題活動,七(2)班同學在活動中積極響應,在甲小區(qū)設立了回收塑料瓶和易拉罐的兩個垃圾桶,班長小明對2周的收集情況進行了統(tǒng)計,根據(jù)下列統(tǒng)計表和廢品收購站的價格表,解決下列問題:
(1)全班2周共收集了 斤塑料瓶,收集了 斤易拉罐.
(2)班委會決定給貧困山區(qū)的孩子們捐贈一套價值50.4元的勵志叢書,你認為按照這樣的收集速度,至少需要收集幾周才能實現(xiàn)這個愿望?寫出計算過程.
(3)七(1)班在乙小區(qū)也設立了塑料瓶和易拉罐的回收點,兩周收集塑料瓶和易拉罐共計440個,按相同價格出售后,所得金額比七(2)班兩個周的廢品回收金額多1.8元,求七(1)班同學兩周收集的塑料瓶和易拉罐各多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)如圖,南北方向線MN以西為我國領海,以東為公海.上午9時50分,我緝私艇A發(fā)現(xiàn)正東方向有一走私艇C以13海里/時的速度偷偷向我領海駛來,便立即通知正在MN線上巡邏的緝私艇B.已知A,C兩艇的距離是13海里,A,B兩艇的距離是5海里,緝私艇B與C艇的距離是12海里,若C艇的速度不變,那么它最早會在什么時間進入我國領海?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com