【題目】某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.
根據(jù)所給信息,解答以下問題:
(1)在這次調(diào)查中一共抽取了 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是 度;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)落在 等級(jí);
(5)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
【答案】(1)40;(2)117;(3)補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示;見解析;(4)B;(5)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有30人.
【解析】
(1)根據(jù)B等級(jí)的學(xué)生數(shù)和所占的百分比可以求得本次調(diào)查的學(xué)生數(shù);
(2)根據(jù)(1)中的結(jié)果可以求得在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角的度數(shù);
(3)根據(jù)(1)中的結(jié)果可以求得C等級(jí)的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以得到所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)落在哪個(gè)等級(jí);
(5)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人.
(1)18÷45%=40,
即在這次調(diào)查中一共抽取了40名學(xué)生,
故答案為:40;
(2)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是:360°×=117°,
故答案為:117;
(3)C等級(jí)的人數(shù)為:40﹣4﹣18﹣5=13,
補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示;
(4)由統(tǒng)計(jì)圖可知,
所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)落在B等級(jí),
故答案為:B;
(5)300×=30(人),
答:足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有30人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)方法形成
如圖①,在四邊形ABCD中,AB∥DC,點(diǎn)H是BC的中點(diǎn),連結(jié)AH并延長交DC的延長線于M,則有CM=AB.請(qǐng)說明理由;
(2)方法遷移
如圖②,在四邊形ABCD中,點(diǎn)H是BC的中點(diǎn),E是AD上的點(diǎn),且△ABE和△DEC都是等腰直角三角形,∠BAE=∠EDC=90°.請(qǐng)?zhí)骄?/span>AH與DH之間的關(guān)系,并說明理由.
(3)拓展延伸
在(2)的條件下,將Rt△DEC繞點(diǎn)E旋轉(zhuǎn)到圖③的位置,請(qǐng)判斷(2)中的結(jié)論是否依然成立?若成立,請(qǐng)說明理由;若不成立,請(qǐng)舉例說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD·AB;
(3)若⊙O的半徑為2,∠ACD=300,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y=(x>0)的圖象經(jīng)過點(diǎn)A(,4),直線y=x與雙曲線交于B點(diǎn),過A,B分別作y軸、x軸的垂線,兩線交于P點(diǎn),垂足分別為C,D.
(1)求雙曲線的解析式;
(2)求證:△ABP∽△BOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”長假期間,某玩具超市設(shè)立了一個(gè)如圖所示的可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,開展有獎(jiǎng)購買活動(dòng),顧客購買玩具就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)獎(jiǎng)品.下表是該活動(dòng)的一組統(tǒng)計(jì)數(shù)據(jù):
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”區(qū)域的次數(shù)m | 68 | 108 | 140 | 355 | 560 | 690 |
落在“鉛筆”區(qū)域的頻率 | 0.68 | 0.72 | 0.70 | 0.71 | 0.70 | 0.69 |
下列說法不正確的是( 。
A. 當(dāng)n很大時(shí),估計(jì)指針落子在”鉛筆“區(qū)域的概率大約是0.70
B. 假如你去轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,獲得“鉛筆”概率大約是0.70
C. 如果轉(zhuǎn)動(dòng)轉(zhuǎn)盤3000次,指針落在“文具盒”區(qū)域的次數(shù)大約有900次
D. 轉(zhuǎn)動(dòng)轉(zhuǎn)盤20次,一定有6次獲得“文具盒”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.
已知,△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E在邊BC上,且∠DAE=α.
(1)如圖1,當(dāng)α=60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連接DF,
①求∠DAF的度數(shù);
②求證:△ADE≌△ADF;
(2)如圖2,當(dāng)α=90°時(shí),猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)α=120°,BD=4,CE=5時(shí),請(qǐng)直接寫出DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com