【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過(guò)點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E、F.
(1)求證;DE=DF;
(2)若∠A=90°,圖中與DE相等的還有哪些線段?(不用說(shuō)明理由)
【答案】(1)證明見(jiàn)解析;(2)AE,AF,BE,CF.
【解析】
(1)連接AD,根據(jù)等腰三角形“三線合一”的性質(zhì)可得∠EAD=∠FAD,根據(jù)AAS可證明△AED≌△AFD,即可證明DE=DF;(2)如圖,連接AD,由∠A=90°可知△ABC是等腰直角三角形,進(jìn)而可得AD=BD=DC,AD⊥BC,根據(jù)DE⊥AB可得DE=BE=AE,同理可得DF=AF=CF,綜上即可得答案.
(1)連接AD.
∵AB=AC,D是BC的中點(diǎn),
∴∠EAD=∠FAD,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
又∵AD=AD,
∴△AED≌△AFD,
∴DE=DF.
(2)如圖:連接AD,
∵∠A=90°,AB=AC,D為BC邊的中點(diǎn),
∴AD=BD,AD⊥BC,
∵DE⊥AB,
∴DE=BE=AE,
同理可得:DF=AF=CF
∴若∠BAC=90°,圖中與DE相等的有線段AE,AF,BE,CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE=時(shí),四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC>AB,AD平分∠BAC,點(diǎn)D到點(diǎn)B與點(diǎn)C的距離相等,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E.
(1)求證:BE=CE;
(2)請(qǐng)直接寫(xiě)出∠ABC,∠ACB,∠ADE三者之間的數(shù)量關(guān)系;
(3)若∠ACB=40°,∠ADE=20°,求∠DCB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,D是AC邊上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中正確的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在8×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,△ABC的三個(gè)頂點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫(huà)△ABD(點(diǎn)D在小正方形的頂點(diǎn)上),使△ABD的周長(zhǎng)等于△ABC的周長(zhǎng),且以A,B,C,D為頂點(diǎn)的四邊形是軸對(duì)稱圖形;
(2)在圖2中畫(huà)△ABE(點(diǎn)E在小正方形的頂點(diǎn)上),使△ABE的周長(zhǎng)等于△ABC的周長(zhǎng),且以A,B,C,E為頂點(diǎn)的四邊形是中心對(duì)稱圖形,并直接寫(xiě)出該四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究題.
已知:如圖.
求證:
老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對(duì)這道題的證明,在證明過(guò)程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是_________.
(2)接下來(lái),小穎用《幾何畫(huà)板》對(duì)圖形進(jìn)行了變式,她先畫(huà)了兩條平行線然后在平行線間畫(huà)了一點(diǎn),連接后,用鼠標(biāo)拖動(dòng)點(diǎn)分別得到了圖①②③,小穎發(fā)現(xiàn)圖②正是上面題目的原型,于是她由上題的結(jié)論猜想到圖①和③中的與之間也可能存在著某種數(shù)量關(guān)系于是她利用《幾何畫(huà)板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請(qǐng)你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問(wèn)題:
①猜想圖①中與之間的數(shù)量關(guān)系并加以證明:
②補(bǔ)全圖③,直接寫(xiě)出與之間的數(shù)量關(guān)系:_______.
(3)學(xué)以致用:一個(gè)小區(qū)大門(mén)欄桿的平面示意圖如圖所示,垂直地面于平行于地面
,若,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,連結(jié)CE交AD于點(diǎn)F,連結(jié)BD交CE于點(diǎn)G,連結(jié)BE.下列結(jié)論:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四邊形BCDE=BD·CE;⑤BC2+DE2=BE2+CD2.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在的一邊上,按要求畫(huà)圖并填空:
(1)過(guò)點(diǎn)畫(huà)直線,與的另一邊相交于點(diǎn);
(2)過(guò)點(diǎn)畫(huà)的垂線,垂足為點(diǎn);
(3)過(guò)點(diǎn)畫(huà)直線,交直線于點(diǎn);
(4)直接寫(xiě)出_____;
(5)如果,,,那么點(diǎn)到直線的距離為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com