【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動(dòng)點(diǎn),點(diǎn)F是射線(xiàn)CD上一點(diǎn),射線(xiàn)ED和射線(xiàn)AF交于點(diǎn)G,且∠AGE=∠DAB.
(1)求線(xiàn)段CD的長(zhǎng);
(2)如果△AEG是以EG為腰的等腰三角形,求線(xiàn)段AE的長(zhǎng);
(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍.
【答案】答案見(jiàn)解析.
【解析】
試題(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,則DH=BC=12,CD=BH,再利用勾股定理計(jì)算出AH,從而得到BH和CD的長(zhǎng);
(2)分類(lèi)討論:當(dāng)EA=EG時(shí),則∠AGE=∠GAE,則判斷G點(diǎn)與D點(diǎn)重合,即ED=EA,作EM⊥AD于M,如圖1,則AM=AD=,通過(guò)證明Rt△AME∽Rt△AHD,利用相似比可計(jì)算出此時(shí)的AE長(zhǎng);當(dāng)GA=GE時(shí),則∠AGE=∠AEG,可證明AE=AD=15,(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再證明△EAG∽△EDA,則利用相似比可表示出EG=,則可表示出DG,然后證明△DGF∽△EGA,于是利用相似比可表示出x和y的關(guān)系.
試題解析:(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;
(2)當(dāng)EA=EG時(shí),則∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G點(diǎn)與D點(diǎn)重合,即ED=EA,作EM⊥AD于M,如圖1,則AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;
當(dāng)GA=GE時(shí),則∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,綜上所述,△AEC是以EG為腰的等腰三角形時(shí),線(xiàn)段AE的長(zhǎng)為或15;
(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=():,∴(9<x<).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B(﹣1,3),點(diǎn)A(﹣5,0),點(diǎn)P是直線(xiàn)y=x﹣2上一點(diǎn),且∠ABP=45°,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖甲和圖乙分別是A,B兩家酒店去年下半年的月?tīng)I(yíng)業(yè)額(單位:百萬(wàn)元)統(tǒng)計(jì)圖.
(1)求A酒店12月份的營(yíng)業(yè)額a的值.
(2)已知B酒店去年下半年的月平均營(yíng)業(yè)額為2.3百萬(wàn)元,求8月份的月?tīng)I(yíng)業(yè)額,并補(bǔ)全折線(xiàn)統(tǒng)計(jì)圖.
(3)完成下面的表格(單位:百萬(wàn)元)
(4)綜合以上分析,你認(rèn)為哪一些數(shù)據(jù)更能較為準(zhǔn)確的反映酒店的經(jīng)營(yíng)業(yè)績(jī)?你認(rèn)為哪家酒店的經(jīng)營(yíng)狀況較好?請(qǐng)簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,鐵路上A,B兩點(diǎn)相距25 km,C,D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】是等腰直角三角形,點(diǎn)為線(xiàn)段上一點(diǎn)(點(diǎn)不和兩點(diǎn)重合),連接并延長(zhǎng),在的延長(zhǎng)線(xiàn)上找一點(diǎn),使.點(diǎn)為線(xiàn)段上一點(diǎn)(點(diǎn)不和兩點(diǎn)重合),連接,交于點(diǎn).
(1)如圖1,若是線(xiàn)段的中點(diǎn),求.
(2)如圖2,若點(diǎn)是線(xiàn)段的中點(diǎn),,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016山東省濟(jì)寧市)如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于( 。
A. 60B. 80C. 30D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點(diǎn)分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點(diǎn)P滿(mǎn)足:①PA⊥x軸;②PO=(O為坐標(biāo)原點(diǎn)),求反比例函數(shù)的關(guān)系式;
(3)求點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)Q的坐標(biāo),判斷點(diǎn)Q是否在該反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=AC,點(diǎn)P是AB上一動(dòng)點(diǎn),點(diǎn)Q是AC的延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),且點(diǎn)P從B運(yùn)動(dòng)向A、點(diǎn)Q從C運(yùn)動(dòng)向Q移動(dòng)的時(shí)間和速度相同,PQ與BC相交于點(diǎn)D,若AB=,BC=16.
(1)如圖1,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),求CD的長(zhǎng);
(2)如圖②,過(guò)點(diǎn)P作直線(xiàn)BC的垂線(xiàn),垂足為E,當(dāng)點(diǎn)P、Q在移動(dòng)的過(guò)程中,設(shè)BE+CD=λ,λ是否為常數(shù)?若是請(qǐng)求出λ的值,若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=45°,AB=AC,點(diǎn)D為BC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A.①②③B.②③④C.①②④D.①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com