【題目】某學校要開展校園文化藝術節(jié)活動,為了合理編排節(jié)目,對學生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調(diào)查(每名學生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計圖.
請你根據(jù)圖中信息,回答下列問題:
(1)本次共調(diào)查了 名學生.
(2)在扇形統(tǒng)計圖中,“歌曲”所在扇形的圓心角等于 度.
(3)補全條形統(tǒng)計圖(標注頻數(shù)).
(4)根據(jù)以上統(tǒng)計分析,估計該校2000名學生中最喜愛小品的人數(shù)為 人.
【答案】(1)本次共調(diào)查了50名學生;(2)72°;(3)補全條形統(tǒng)計圖見解析;(4)該校2000名學生中最喜愛小品的人數(shù)為640人;
【解析】
(1)用最喜愛相聲類的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);
(2)用360°乘以最喜愛歌曲類人數(shù)所占的百分比得到“歌曲”所在扇形的圓心角的度數(shù);
(3)先計算出最喜歡舞蹈類的人數(shù),然后補全條形統(tǒng)計圖;
(4)用2000乘以樣本中最喜愛小品類的人數(shù)所占的百分比即可;
(1)14÷28%=50,
所以本次共調(diào)查了50名學生;
(2)在扇形統(tǒng)計圖中,“歌曲”所在扇形的圓心角的度數(shù)=360°×=72°;
(3)最喜歡舞蹈類的人數(shù)為50﹣10﹣14﹣16=10(人),
補全條形統(tǒng)計圖為:
(4)2000×=640,
估計該校2000名學生中最喜愛小品的人數(shù)為640人;
科目:初中數(shù)學 來源: 題型:
【題目】我國古代偉大的數(shù)學家劉微將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示若a=3,b=4,則該三角形的面積為( 。
A. 10B. 12C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋里裝有四個分別標有1、2、3、4的小球,它們的形狀、大小等完全相同.小黑先從口袋里隨機不放回地取出一個小球,記下數(shù)字為x;小白在剩下有三個小球中隨機取出一個小球,記下數(shù)字y.
(1)計算由x、y確定的點(x,y)在函數(shù)圖象上的概率;
(2)小黑、小白約定做一個游戲,其規(guī)則是:若x、y滿足xy>6,則小黑勝;若x、y滿足xy<6,則小白勝.這個游戲規(guī)則公平嗎?說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
頻數(shù)頻率分布表
成績x(分) | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)這200名學生成績的中位數(shù)會落在 分數(shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.
(1)“從中任意抽取1個球不是紅球就是白球”是 事件,“從中任意抽取1個球是黑球”是 事件;
(2)從中任意抽取1個球恰好是紅球的概率是 ;
(3)學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別交x軸、y軸于點B,C,正方形AOCD的頂點D在第二象限內(nèi),E是BC中點,OF⊥DE于點F,連結(jié)OE,動點P在AO上從點A向終點O勻速運動,同時,動點Q在直線BC上從某點Q1向終點Q2勻速運動,它們同時到達終點.
(1)求點B的坐標和OE的長;
(2)設點Q2為(m,n),當tan∠EOF時,求點Q2的坐標;
(3)根據(jù)(2)的條件,當點P運動到AO中點時,點Q恰好與點C重合.
①延長AD交直線BC于點Q3,當點Q在線段Q2Q3上時,設Q3Q=s,AP=t,求s關于t的函數(shù)表達式.
②當PQ與△OEF的一邊平行時,求所有滿足條件的AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線軸于點(1,0),直線軸于點(2,0),直線軸于點(3,0),…,直線軸于點(n,0)。函數(shù)的圖象與直線分別交于點;函數(shù)的圖象與直線分別交于點。如果的面積記作,四邊形的面積記作,四邊形的面積記作,…,四邊形的面積記作,那么_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點E
(1)證明:直線PD是⊙O的切線.
(2)如果∠BED=60°,,求PA的長.
(3)將線段PD以直線AD為對稱軸作對稱線段DF,點F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實效,抽樣調(diào)查了部分居民小區(qū)一段時間內(nèi)生活垃圾的分類情況,其相關信息如下:
根據(jù)圖表解答下列問題:
(1)請將條形統(tǒng)計圖補充完整;
(2)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共 噸;
(3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占,每回收1噸塑料類垃圾可獲得0.7噸二級原料.假設該城市每月產(chǎn)生的生活垃圾為5 000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com