【題目】 為鼓勵創(chuàng)業(yè),某市政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應運而生,某社區(qū)統(tǒng)計了該社區(qū)今年1~6月份新注冊小型企業(yè)的數(shù)量,并將結果繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖:
根據(jù)以上信息解答下列問題:
(1)該社區(qū)1~6月新注冊小型企業(yè)一共有__________家;
(2)補全條形統(tǒng)計圖。
(3)扇形統(tǒng)計圖中“4月份”所在扇形的圓心角的度數(shù)為 ;
(4)如果該市今年1~6月份新注冊小型企業(yè)共有1200家,估計全市今年1月份新注冊小型企業(yè)的數(shù)量.
【答案】(1)20;(2)見解析;(3)72°;(4)該市今年1月份新注冊小型企業(yè)的數(shù)量為300(家).
【解析】
(1)根據(jù)3月份的企業(yè)數(shù)量和所占百分比即可求出新注冊小型企業(yè)總數(shù);
(2)求出4、5月份新注冊小型企業(yè)的數(shù)量,再補全統(tǒng)計圖即可;
(3)用360°乘以“4月份”所占百分比即可;
(4)用今年1~6月份新注冊小型企業(yè)數(shù)量乘以“1月份新注冊小型企業(yè)”所占的百分比即可求出答案.
(1)20
該社區(qū)1~6月新注冊小型企業(yè)的總數(shù)量為3÷15%=20(家).
(2)5月份新注冊小型企業(yè)的數(shù)量為20×15%=3(家),
則4月份新注冊小型企業(yè)的數(shù)量是20-5-4-3-3-1=4(家),
補全條形圖如圖所示.
(3)72°
扇形統(tǒng)計圖中“4月份”所在扇形的圓心角的度數(shù)為=72°.
(4)估計該市今年1月份新注冊小型企業(yè)的數(shù)量為1200×=300(家)
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填入相應的集合內(nèi):
﹣2.5,0,8,﹣2,,, ﹣0.5252252225…(每兩個5之間依次增加1個2).
(1)正數(shù)集合:{ …};
(2)負數(shù)集合:{ …};
(3)整數(shù)集合:{ …};
(4)無理數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)15-[3-(-5-4)];
(2)2.5-(-2)÷-1.5;
(3)2-{8+(-1)-[(-4)×2÷(-2)+6×(-6)]}.
(4)(-5)×(+2019)+(+7)×(-2019)+12×2019.
(5) (用簡便方法).
(6).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(-2,1),B(-3,-2),C(1,-2).把△ABC向上平移4個單位長度,再向右平移3個單位長度,得到△A′B′C′.
(1)在圖中畫出△A′B′C′,并寫出點A′,B′,C′的坐標;
(2)連接A′C和A′A,求三角形AA′C的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知B′C′∥BC,C′D′∥CD,D′E′∥DE.
(1)求證:四邊形BCDE位似于四邊形B′C′D′E′;
(2)若=3,S四邊形BCDE=20,求S四邊形B′C′D′E′.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師請同學思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時,有如下思路:連接AC.
結合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結論并證明;
②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于點D,AB=5,點E是邊AB上的動點(不與A,B點重合),連接DE,過點D作DF⊥DE交AC于點F,連接EF,點H在線段AD上,且DH=AD,連接EH,HF,記圖中陰影部分的面積為S1,△EHF的面積記為S2,則S2的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結QB并延長交直線AD于點E.
(1)如圖,求∠QEP的度數(shù);
(2)如圖,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的大括號內(nèi):
1,-0.1,-789,25,0,-20,-3.14,
正整數(shù)集{___…}; 負整數(shù)集{___…},
正分數(shù)集{____…}; 負分數(shù)集{____…};
正有理數(shù)集{______…}; 負有理數(shù)集{______…}.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com