【題目】如圖,△ABC的三條角平分線相交于點I,過點IDIIC,交AC于點D.

(1)如圖①,求證:∠AIB=ADI;

(2)如圖②,延長BI,交外角∠ACE的平分線于點F.

①判斷DICF的位置關(guān)系,并說明理由;

②若∠BAC=70°,求∠F的度數(shù).

【答案】(1)證明見解析;(2)解:①結(jié)論:DICF,35°.

【解析】1)只要證明∠AIB=90°+ACB,ADI=90°+ACB即可;
(2)①只要證明∠IDC=DCF即可;
②首先求出∠ACE-ABC=BAC=70°,再證明∠F=ACE-ABC=ACE-ABC)即可解決問題;

(1)證明:∵AI,BI分別平分∠BAC,ABC,

∴∠BAI=BAC,ABI=ABC,

∴∠BAI+ABI= (BAC+ABC)= (180°-ACB)=90°-ACB.

ABI中,∠AIB=180°-(BAI+ABI)=180°-(90°-ACB)=90°+ACB.

CI平分∠ACB,∴∠DCI=ACB.DIIC,

∴∠DIC=90°,∴∠ADI=DIC+DCI=90°+ACB.

∴∠AIB=ADI.

(2)解:①結(jié)論:DICF.

理由:∵∠IDC=90°-DCI=90°-ACB,CF平分∠ACE,

∴∠ACF=ACE= (180°-ACB)=90°-ACB,∴∠IDC=ACF,DICF.

②∵∠ACE=ABC+BAC,∴∠ACE-ABC=BAC=70°.

∵∠FCE=FBC+F,∴∠F=FCE-FBC.

∵∠FCE=ACE,FBC=ABC,

∴∠F=ACE-ABC= (ACE-ABC)=35°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABCAC、BC上的點,點P是一動點.∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=   °;

(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:   ;

(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.

(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:  .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,△ABC中,∠ABC,∠ACB的平分線交于點O,求證:∠BOC=90+∠A.

變式1:如圖(2)所示,∠ABC,∠ACD的平分線交于點O,求證:∠BOC=∠A.

變式2:如圖(3)所示,∠CBD,∠BCE的平分線交于點O,求證:∠BOC=90-∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+4ax+b經(jīng)過A.C兩點,且與x軸交于另一點B.

(1)求拋物線的解析式;
(2)若點Q在拋物線上,且△AQC與△BQC面積相等,求點Q的坐標;
(3)如圖2,P為△AOC外接圓上弧ACO的中點,直線PC交x軸于點D,∠EDF=∠ACO,當(dāng)∠EDF繞點D旋轉(zhuǎn)時,DE交直線AC于點M,DF交y軸負半軸于點N.請你探究:CN﹣CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,點D,E分別是邊AB,AC的中點,延長DE至點F,使EF=DE,則四邊形ADCF一定是(
A.矩形
B.菱形
C.正方形
D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點E為矩形ABCD外一點,連接AE,DE,且AE=DE,連接EB,EC分別與AD相交于點F,G.

(1)如圖1,求證:∠ABE=∠DCE;

(2)如圖2,若△BCE是等邊三角形,且AE=AB,在不添加任何輔助線的情況下,請直接寫出圖2中四對全等的鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個多位自然數(shù)的任意兩個相鄰數(shù)位上,右邊數(shù)位上的數(shù)總比左邊數(shù)位上數(shù)大1,那么我們把這樣的自然數(shù)叫做“相連數(shù)”.例如:234,4567,56789,…都是“相連數(shù)”.

(1)請直接寫出最大的兩位“相連數(shù)”與最小的三位“相連數(shù)”,并求它們的差.

(2)若某個“相連數(shù)”恰好等于其個位數(shù)的469倍,求這個“相連數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某項針對18﹣35歲的青年人每天發(fā)微博數(shù)量的調(diào)查中,設(shè)一個人的“日均發(fā)微博條數(shù)”為m,規(guī)定:當(dāng)0≤m<5時為A級,5≤m<10時為B級,10≤m<15時為C級,m≥15時為D級.現(xiàn)隨機抽取部分符合年齡條件的青年人開展每人“日均發(fā)微博條數(shù)”的調(diào)查,制作圖表如下: 18﹣35歲青年人日均發(fā)微博條數(shù)統(tǒng)計表

m

頻數(shù)

百分數(shù)

A級(0≤m<5)

90

0.3

B級(5≤m<10)

120

a

C級(10≤m<15)

b

0.2

D級(m≥15)

30

0.1

請你根據(jù)以上信息解答下列問題:

(1)求a,b;
(2)補全頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  ;

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案