【題目】如圖,四邊形ABCD與四邊形AEFG是位似圖形,且AC:AF=2:3,則下列結(jié)論不正確的是( 。
A.四邊形ABCD與四邊形AEFG是相似圖形
B.AD與AE的比是2:3
C.四邊形ABCD與四邊形AEFG的周長比是2:3
D.四邊形ABCD與四邊形AEFG的面積比是4:9
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016甘肅省白銀市)如圖,在平面直角坐標(biāo)系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1沿x軸方向向左平移3個單位后得到△A2B2C2,寫出頂點A2,B2,C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知△ABC , 任取一點O , 連AO , BO , CO , 并取它們的中點D , E , F , 得△DEF , 則下列說法正確的個數(shù)是( )
①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點A、B分別在x、y軸上,點B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
在△ABC中,AB,BC,AC的長分別為,,,求這個三角形的面積.曉輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點三角形ABC(即△ABC的三個頂點都在小正方形的頂點處),如圖①所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你直接寫出△ABC的面積:________.
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC的三邊長分別為a,2a,a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.
探索創(chuàng)新
(3)若△ABC的三邊長分別為,,2 (m>0,n>0,且m≠n),試運用構(gòu)圖法(自己重新設(shè)計一個符合結(jié)構(gòu)特征的網(wǎng)格)求出這個三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC.BD相交于點O , 過點O作OE⊥AC交AD于E , 若AB=6,AD=8,求sin∠OEA的值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC和等邊△BPE,點P在BC的延長線上,EC的延長線交AP于M,連BM.
(1)求證:AP=CE;
(2)求∠PME的度數(shù);
(3)求證:BM平分∠AME;
(4)AM,BM,MC之間有怎樣的數(shù)量關(guān)系,直接寫出,不需證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com