【題目】商場(chǎng)經(jīng)營的某品牌童裝,4月的銷售額為20000元,為擴(kuò)大銷量,5月份商場(chǎng)對(duì)這種童裝打9折銷售,結(jié)果銷量增加了50件,銷售額增加了7000元.
(1)求該童裝4月份的銷售單價(jià);
(2)若4月份銷售這種童裝獲利8000元,6月全月商場(chǎng)進(jìn)行“六一”兒童節(jié)促銷活動(dòng).童裝在4月售價(jià)的基礎(chǔ)上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?
【答案】(1)4月份的銷售單價(jià)為200元;(2)銷量至少為250件,才能保證6月的利潤比4月的利潤至少增長25%.
【解析】
(1)設(shè)4月份的銷售單價(jià)為x元.由題意得-=50,解方程可得;
(2)先求出4、6月份的銷量,設(shè)銷量為y件,由題意得160y-120y≥8 000×(1+25%),解不等式可得.
解:(1)設(shè)4月份的銷售單價(jià)為x元.
由題意得-=50,
解得x=200.
經(jīng)檢驗(yàn),x=200是原方程的解,且符合題意.
所以4月份的銷售單價(jià)為200元.
(2)4月份的銷量為20000÷200=100(件),則每件衣服的成本為(20000-8000)÷100=120(元).
6月份的售價(jià)為200×0.8=160(元),
設(shè)銷量為y件,
由題意得160y-120y≥8 000×(1+25%),
解得y≥250,
所以銷量至少為250件,才能保證6月的利潤比4月的利潤至少增長25%.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=2,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)二次函數(shù)的圖象經(jīng)過A(0,﹣6)、B(4,﹣6)、C(6,0)三點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)分別聯(lián)結(jié)AC、BC,求tan∠ACB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖22,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在x軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、N重合),過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F。
【1】若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:
【2】若OA=2.0C=4.問當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形OAEF的面積最大.其最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張平行四邊形紙片ABCD,要求利用所學(xué)知識(shí)將它變成一個(gè)菱形,甲、乙兩位同學(xué)的作法分別如下:
對(duì)于甲、乙兩人的作法,可判斷( )
A. 甲正確,乙錯(cuò)誤 B. 甲錯(cuò)誤,乙正確
C. 甲、乙均正確 D. 甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AC為一條直線,O是AC上一點(diǎn), OE、OF分別平分∠AOB和∠BOC.
(1)如圖:若∠AOB=120°,求∠EOF的大小;
(2)若∠AOB=60°,則∠EOF= _______ °;
(3)任意改變∠AOB的大小,∠EOF的大小會(huì)改變嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A(2,0)的直線l與y軸交于點(diǎn)B,tan∠OAB=,直線l上的點(diǎn)P位于y軸左側(cè),且到y軸的距離為1.
(1)求直線l的表達(dá)式;
(2)若反比例函數(shù)的圖象經(jīng)過點(diǎn)P,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com