【題目】已知直線AB的函數(shù)表達(dá)式為y=x+4,交x軸于點(diǎn)A,交y軸于點(diǎn)B,動(dòng)點(diǎn)C從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時(shí),經(jīng)過B、C兩點(diǎn)的直線與直線AB關(guān)于y軸對(duì)稱?并求出直線BC的函數(shù)關(guān)系式;
(3)在第(2)問的前提下,在直線AB上是否存在一點(diǎn)P,使得S△BCP=2S△ABC?如果存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
【答案】(1)B(0,4),A(﹣3,0);(2)t=3秒,直線BC解析式為:y=﹣x+4;(3)見解析.
【解析】
(1)令=0,則y=4可求出點(diǎn)B的坐標(biāo),令y=0,則0=x+4可求得點(diǎn)A的坐標(biāo);
(2)先求出點(diǎn)A′的坐標(biāo),即點(diǎn)C的坐標(biāo),運(yùn)用待定系數(shù)法可得直線BC的解析式;
(3)分兩種情況:當(dāng)點(diǎn)P在第三象限時(shí),當(dāng)點(diǎn)P在第一象限時(shí)分別求解即可.
(1)令=0,則y=4,
則點(diǎn)B(0,4),
令y=0,則0=x+4,解得:x=﹣3,
則點(diǎn)A(﹣3,0).
(2)點(diǎn)A關(guān)于y軸點(diǎn)對(duì)稱點(diǎn)為A′(3,0),
所以當(dāng)點(diǎn)C運(yùn)動(dòng)到A′(3,0)時(shí),直線BC與直線AB關(guān)于y軸對(duì)稱,則t==3秒.
設(shè)此時(shí)直線BC的解析式為:y=kx+b.
把點(diǎn)C(3,0)和點(diǎn)B(0,4)代入得:,
解得:.
故直線BC解析式為:y=﹣x+4.
(3)存在,如圖,當(dāng)點(diǎn)P在第三象限時(shí),S△BCP=2S△ABC,則S△ACP=S△ABC,
∴點(diǎn)P到x軸的距離等于點(diǎn)B到x軸的距離,
∴點(diǎn)P的縱坐標(biāo)為﹣4,
把y=﹣4代入到y=x+4中得:﹣4=x+4,
解得:x=﹣6,
則P(﹣6,﹣4);
當(dāng)點(diǎn)P在第一象限時(shí),S△BCP=2S△ABC,則S△ACP=3S△ABC,
∴點(diǎn)P到x軸的距離等于點(diǎn)B到x軸的距離,
∴點(diǎn)P的縱坐標(biāo)為12,
把y=12代入到y=x+4中得:12=x+4,
解得:x=6,
則P'(6,12),
即:點(diǎn)P的坐標(biāo)為(﹣6,﹣4)或(6,12).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)第一次用11000元購進(jìn)某款拼裝機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用24000元第二次購進(jìn)同款機(jī)器人,所購進(jìn)數(shù)量是第一次的2倍,但單價(jià)貴了10元.
(1)求該商家第一次購進(jìn)機(jī)器人多少個(gè)?
(2)若所有機(jī)器人都按相同的標(biāo)價(jià)銷售,要求全部銷售完畢的利潤(rùn)率不低于20%(不考慮其它因素),那么每個(gè)機(jī)器人的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時(shí)間如表:
時(shí)間(分鐘) | 里程數(shù)(公里) | 車費(fèi)(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A1(1,0)作x軸的垂線,交直線y=2x于點(diǎn)B1;點(diǎn)A2與點(diǎn)O關(guān)于直線A1B1對(duì)稱;過點(diǎn)A2(2,0)作x軸的垂線,交直線y=2x于點(diǎn)B2;點(diǎn)A3與點(diǎn)O關(guān)于直線A2B2對(duì)稱;過點(diǎn)A3(4,0)作x軸的垂線,交直線y=2x于點(diǎn)B3;…,按此規(guī)律作下去,則點(diǎn)Bn的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,4),且與直線y=﹣ x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).
(1)求二次函數(shù)的表達(dá)式;
(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;
(3)在(2)的條件下,點(diǎn)N在何位置時(shí),BM與NC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC,ADEF的頂點(diǎn)A,D,C在坐標(biāo)軸上,點(diǎn)F在AB 上,點(diǎn)B,E在函數(shù) ( )的圖象上,若陰影部分的面積為12 - ,則點(diǎn)E的坐標(biāo)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)工程,甲隊(duì)單獨(dú)做需40天完成,若乙隊(duì)先做30天后,甲、乙兩隊(duì)一起合做20天恰好完成任務(wù),請(qǐng)問:
(1)乙隊(duì)單獨(dú)做需要多少天才能完成任務(wù)?
(2)現(xiàn)將該工程分成兩部分,甲隊(duì)做其中一部分工程用了x天,乙隊(duì)做另一部分工程用了y天,若x; y都是正整數(shù),且甲隊(duì)做的時(shí)間不到15天,乙隊(duì)做的時(shí)間不到70天,那么兩隊(duì)實(shí)際各做了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說明理由.
(2)結(jié)論應(yīng)用:① 如圖2,點(diǎn)M,N在反比例函數(shù) (k>0)的圖象上,過點(diǎn)M作ME⊥y軸,過點(diǎn)N作NF⊥x軸,垂足分別為E,F(xiàn).試證明:MN∥EF.
② 若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請(qǐng)判斷 MN與EF是否平行?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+ x+1(a≠0)與x軸交于A,B兩點(diǎn),其中點(diǎn)B坐標(biāo)為(2,0).
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=﹣x上的動(dòng)點(diǎn),當(dāng)直線OP平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,點(diǎn)C是直線BP上方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作y軸的平行線,交直線BP于點(diǎn)D,點(diǎn)E在直線BP上,連結(jié)CE,以CD為腰的等腰△CDE的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com