【題目】如圖,等腰三角形ABC底邊BC的長為4cm,面積是12cm2,腰AB的垂直平分線EFAC于點(diǎn)F,若DBC邊上的動(dòng)點(diǎn),M為線段EF上一動(dòng)點(diǎn),則BM+DM最小值為_____

【答案】6cm

【解析】

連接AD,由于△ABC是等腰三角形,點(diǎn)DBC邊的中點(diǎn),故ADBC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.

解:連接AD,

∵△ABC是等腰三角形,點(diǎn)DBC邊的中點(diǎn),

ADBC,

SABCBCAD×4×AD12,解得AD6cm,

EF是線段AB的垂直平分線,

∴點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,

AD的長為BM+MD的最小值,

BM+DM最小值為6cm,

故答案為:6cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三條邊長分別為2,56,在ABC所在平面內(nèi)畫一條直線,將ABC分成兩個(gè)三角形,使其中一個(gè)三角形為等腰三角形.

1)這樣的直線最多可以畫 條;

2)請(qǐng)?jiān)谌齻(gè)備用圖中分別畫出符合條件的一條直線,要求每個(gè)圖中得到的等腰三角形腰長不同,尺規(guī)作圖,不寫作法,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點(diǎn)A1,3),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=;AC=AE③△ABD是等腰直角三角形;④當(dāng)x1時(shí),y1y2  其中正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè)B2個(gè)C3個(gè)D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬朵)與時(shí)間x(x為整數(shù),單位:)部分對(duì)應(yīng)值如下表所示.

時(shí)間x(天)

0

4

8

12

16

20

銷量y1(萬朵)

0

16

24

24

16

0

另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬朵)與時(shí)間x(x為整數(shù),單位:) 關(guān)系如下圖所示.

1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1x的變化規(guī)律,寫出y1x的函數(shù)關(guān)系式及自變量x的取值范圍;

2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2x的函數(shù)關(guān)系式及自變量x的取值范圍;

3)設(shè)該花木公司日銷售總量為y萬朵,寫出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時(shí)不能擋光.如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時(shí)陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請(qǐng)問新建樓房最高多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論中正確的是( )

A.

B. 當(dāng)時(shí),的增大而減小

C.

D. 是關(guān)于的方程的一個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是一條高速公路的隧道口在平面直角坐標(biāo)系上的示意圖,點(diǎn)、點(diǎn)分別關(guān)于軸對(duì)稱,隧道拱部分為一條拋物線,最高點(diǎn)離路面的距離為米,點(diǎn)離路面為米,隧道的寬度米;則隧道拱拋物線的函數(shù)解析式________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y-x+b的圖象與x軸,y軸分別交于點(diǎn)AB,與一次函數(shù)yx的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為,在x軸上有一點(diǎn)Pa,0),過點(diǎn)Px軸的垂線,分別交一次函數(shù)y-x+b和一次函數(shù)yx的圖象于點(diǎn)CD

1)點(diǎn)M的縱坐標(biāo)是   ;b的值是   ;

2)求線段AB的長;

3)當(dāng)CDAB時(shí),請(qǐng)直接寫出a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案