【題目】如圖,已知二次函數(shù) y=x2+bx+c 過點 A(1,0),C(0,﹣3)

(1)求此二次函數(shù)的解析式;

(2)求△ABC 的面積;

(3)在拋物線上存在一點 P 使△ABP 的面積為 10,請求出點 P 的坐標.

【答案】(1)y=x2+2x﹣3;(2)△ABC 的面積為6;(3)P 點坐標為(﹣4,5),(2,5).

【解析】

(1)將A,C代入解析式即可解題,

(2)求出B點坐標,表示出AB的長,根據(jù)C點坐標表示出△ABC的高即可求出三角形面積,

(3)根據(jù)三角形面積求出三角形的高為5,令x2+2x﹣3=5 或 x2+2x﹣3=﹣5,求解方程即可解題.

(1)根據(jù)題意得:

解得:b=2,c=﹣3,

∴y=x2+2x﹣3;

(2)∵當 y=0 時,有 x2+2x﹣3=0,

解得:x1=﹣3,x2=1.

∴B(﹣3, 0),

又 A(1,0),C(0,﹣3),

∴AB=4,OC=3.

∴△ABC 的面積為×4×3=6;

(3)∵AB=4,△ABP 的面積為 10,

AB 邊上的高為 5,

即點 P 的縱坐標為 5 或﹣5.

∴x2+2x﹣3=5 或 x2+2x﹣3=﹣5,

方程 x2+2x﹣3=5 的解為:x1 =﹣4,x2=2,

方程 x2+2x﹣3=﹣5 沒有實數(shù)解.

P 點坐標為(﹣4,5),(2,5).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一條道路上,甲車從A地到B乙車從B地到A,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時間x(小時)的函數(shù)關(guān)系的圖象,下列說法錯誤的是(  )

A. 乙先出發(fā)的時間為0.5小時 B. 甲的速度是80千米/小時

C. 甲出發(fā)0.5小時后兩車相遇 D. 甲到B地比乙到A地早小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),OABC是一張放在平面直角坐標系中的矩形紙片,O為坐標原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4,在OC邊上取一點D,將將紙片沿AD翻轉(zhuǎn),使點O落在BC邊上的點E處.

(1)請直接寫出D、E兩點的坐標;

(2)如圖(2),線段AE上有一動點P(不與A,E重合),自點A沿AE方向做勻速運動,運動的速度為每秒1個單位長度,設(shè)運動時間為t秒,過點P作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長分別為6、8、10的三角形的內(nèi)切圓半徑是_____,外接圓半徑是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PT與⊙O相交于點T,直線PO與⊙O相交于A,B兩點.已知∠PTA=∠B.

(1)求證:PT是⊙O的切線;

(2)若PT=6,PA=4,求⊙O的半徑;

(3)若PT=TB=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB,C三地在同一條公路上,A地在B,C兩地之間,甲、乙兩車同時從A地出發(fā)勻速行駛,甲車駛向C地,乙車先駛向B地,到達B地后,調(diào)頭按原速經(jīng)過A地駛向C地(調(diào)頭時間忽略不計),到達C地停止行駛,甲車比乙車晚0.4小時到達C地,兩車距B地的路程ykm)與行駛時間xh)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象信息,解答下列問題:

(1)甲車行駛的速度是   km/h,并在圖中括號內(nèi)填入正確的數(shù)值;

(2)求圖象中線段FM所表示的yx的函數(shù)解析式(不需要寫出自變量x的取值范圍);

(3)在乙車到達C地之前,甲、乙兩車出發(fā)后幾小時與A地路程相等?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種飲料,每瓶進價為10元.經(jīng)市場調(diào)查表明,當售價在12元到14元之間(含12元,14元)浮動時,日均銷售y(瓶)與售價x(元)之間的關(guān)系可近似的看作一次函數(shù),且當x=10時,y=500;x=12,y=400.

(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(2)應(yīng)將售價定為每瓶多少元時,所得日均毛利潤最大?最大日均毛利潤為多少元?(每瓶毛利潤=每瓶售價﹣每瓶進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+(2﹣a)x﹣2(a>0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C.給出下列結(jié)論:

①在a>0的條件下,無論a取何值,點A是一個定點;

②在a>0的條件下,無論a取何值,拋物線的對稱軸一定位于y軸的左側(cè);

③y的最小值不大于﹣2;

④若AB=AC,則a=

其中正確的結(jié)論有( 。﹤

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形的邊長為的中點,為正方形邊上的動點,動點從點出發(fā),沿運動,若點經(jīng)過的路程為,的面積為

(1)之間的函數(shù)關(guān)系式.

(2)當點運動路程為多少時,的面積為

查看答案和解析>>

同步練習冊答案