【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,點D為BC邊上任意一點(與B、C不重合),以BD為直角邊構造等腰直角三角形BDE,F為AD的中點.
(1)將△BDE繞點B旋轉(zhuǎn),當點E與F重合時,求證:∠BAE+∠BCD=45°.
(2)將△BDE繞點B旋轉(zhuǎn),當點F在BE上且AB=AD時,求證:2CD=BE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)如圖2中,利用等腰直角三角形的性質(zhì)及旋轉(zhuǎn)的性質(zhì),證明△ABF≌△BCD(SAS)即可解決問題.
(2)如圖3中,作AN⊥BM于N交BE于G,CM⊥BD于M.只要證明△CDM是等腰直角三角形,BN=DN=DM,即可解決問題.
(1)證明:如圖2中,
∵△BDE是等腰直角三角形,△BDE繞點B旋轉(zhuǎn),當點E與F重合,
∴△BFD是得把直角三角形,
∴∠DBF=∠BFD=45°,BD=DF,
∵F為AD的中點,
∴AF=DF,
∴BD=AF,
∵∠ABC=90°,
∴∠ABF+∠DBC=∠ABF+∠BAF=45°,
∴∠BAF=∠DBC,
∵AB=BC,
∴△ABF≌△BCD(SAS),
∴ABF=∠BCD,
∴∠BAE+∠BCD=45°;
(2)證明:如圖3中,作AN⊥BM于N交BE于G,CM⊥BD于M.
由(1)可知△CBM≌△BAN,
∴BN=CM,AN=BM,
∵AB=AD,AN⊥BD,
∴BN=DN,∵ED⊥BD,
∴AN∥DE,
∴∠GAF=∠FDE,BG=GE,
∴DE=2GN,
在△AGF和△DEF中,,
∴△AGF≌△DEF(AAS),
∴AG=DE=BD,
∴AN=3BN,BM=3CM,
∵BN=DN,
∴DM=CM,
∴△CDM是等腰直角三角形,
∴CD=CM,
∵CM=BN=BD,
∴CD=BD,
∵BE=BD,
∴BE=2CD.
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.
(3)應用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線經(jīng)過點M(1,3)和N(3,5)
(1)試判斷該拋物線與x軸交點的情況;
(2)平移這條拋物線,使平移后的拋物線經(jīng)過點A(﹣2,0),且與y軸交于點B,同時滿足以A、O、B為頂點的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)直接寫出y甲,y乙與x之間的函數(shù)關系式(不寫過程);
(2)①求出點M的坐標,并解釋該點坐標所表示的實際意義;
②根據(jù)圖象判斷,x取何值時,y乙>y甲.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】六一期間,某公園游戲場舉行“迎奧運”活動.有一種游戲的規(guī)則是:在一個裝有個紅球和若干個白球(每個球除顏色外其他相同)的袋中,隨機摸一個球,摸到一個紅球就得到一個奧運福娃玩具.已知參加這種游戲活動為人次,公園游戲場發(fā)放的福娃玩具為個.
求參加一次這種游戲活動得到福娃玩具的概率;
請你估計袋中白球接近多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀念品售價不能超過批發(fā)價的2.5倍.
(1)當每個紀念品定價為3.5元時,商店每天能賣出________件;
(2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,、分別表示步行與騎車在同一路上行駛的路程(千來)與時間(小時)之間的關系.
(1)出發(fā)時與相距______千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是______小時.
(3)出發(fā)后______小時與相遇.
(4)求出行走的路程與時間的函數(shù)關系式.
(5)若的自行車不發(fā)生故障,保持出發(fā)時的速度前進,那么幾小時與相遇?相遇點離的出發(fā)點多少千米?請同學們在圖中畫出這個相遇點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將矩形紙片ABCD沿AC剪開,得到△ABC和△ACD.
(1)將圖1中的△ABC繞點A順時針旋轉(zhuǎn)∠α,使∠α=∠BAC,得到圖2所示的△ABC′,過點C′作C′E∥AC,交DC的延長線于點E,試判斷四邊形ACEC′的形狀,并說明理由.
(2)若將圖1中的△ABC繞點A順時針旋轉(zhuǎn),使B,A,D在同一條直線上,得到圖3所示的△ABC′,連接CC′,過點A作AF⊥CC′于點F,延長AF至點G,使FG=AF,連接CG,C′G,試判斷四邊形ACGC′的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度數(shù);
(2)若DE平分∠ADB,求∠AED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com