【題目】2019年11月26日,魯南高鐵正式開通運營.魯南高鐵臨沂段修建過程中需要經(jīng)過一座小山.如圖,施工方計劃沿AC方向挖隧道,為了加快施工速度,要在小山的另一側(cè)D(A、C、D共線)處同時施工.測得∠CAB=30°,,∠ABD=105°,求AD的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象相交于點A(1,4)和B(﹣2,n).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)請根據(jù)圖象直接寫出y1<y2時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,點D為射線BC上一點,聯(lián)結(jié)AD,過點B作BE⊥AD分別交射線AD、AC于點E、F,聯(lián)結(jié)DF,過點A作AG∥BD,交直線BE于點G.
(1)當(dāng)點D在BC的延長線上時,如果CD=2,求tan∠FBC;
(2)當(dāng)點D在BC的延長線上時,設(shè)AG=x,S△DAF=y,求y關(guān)于x的函數(shù)關(guān)系式(不需要寫函數(shù)的定義域);
(3)如果AG=8,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標(biāo);
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(﹣3,0),其對稱軸為直線x=﹣,結(jié)合圖象分析下列結(jié)論:①abc>0;②3a+c>0;③當(dāng)x<0時,y隨x的增大而增大:④若m,n(m<n)為方程a(x+3)(x﹣2)+3=0的兩個根,則m<﹣3且n>2;⑤<0,其中正確的結(jié)論有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣3,0)、B兩點,與y軸相交于點.當(dāng)x=﹣4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC,BC.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當(dāng)運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,則t的值為 ,點P的坐標(biāo)為 ;
(4)拋物線對稱軸上是否存在一點F,使得△ACF是以AC為直角邊的直角三角形?若不存在,請說明理由;若存在,請直接寫出點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一組密碼的一部分.為了保密,許多情況下可采用不同的密碼,請你運用所學(xué)知識找到破譯的“鑰匙”.目前,已破譯出“今年考試”的真實意思是“努力發(fā)揮”.若“今”所處的位置為(x,y),你找到的密碼鑰匙是 ,破譯“正做數(shù)學(xué)”的真實意思是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com