如圖,一條船從海島A處向正南航行到達海島B處,從海島A處測得燈塔C在南偏東30°方向,從海島B處測得燈塔C在南偏東60°方向,已知A、B兩海島距離25海里,則海島B到燈塔C的距離為
 
海里.
考點:等腰三角形的判定與性質(zhì),方向角
專題:應用題
分析:如圖,作輔助線,首先表示出BC、DC的長度,然后借助直角三角形的邊角關系即可解決問題.
解答:解:如圖,過點C作CD⊥AB,垂足為D;
則∠BCD=90°-60°=30°;
設BD=x,則BC=2x,CD=
3
x

∵tan30°=
DC
AD
,
3
x
25+x
=
3
3

解得:x=
25
2
,
∴BC=2x=25,
即海島B到燈塔C的距離為 25海里.
點評:該命題主要考查了方向角及其應用問題;解題的關鍵是作輔助線,構(gòu)造直角三角形,借助勾股定理及直角三角形的邊角關系來分析、判斷、推理或解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

甲步行,乙騎自行車,同時從相距27千米的兩地相向而行,2小時相遇,已知乙比甲每小時多走5.5千米,求甲、乙兩人的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:1
2
13
×
11
13
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

課堂上王老師給學生出了一道題:當x=2012,y=2013時,求[3x(x2y-xy2)+xy•(3xy-2x2)]÷x2y的值,小明說:“老師給的條件y=2013是多余的.”小剛說:“不給這個條件,就不能求出結(jié)果,所以不是多余的.”你認為他們誰說的有道理?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知在△ABC中,AD平分∠BAC,EM是AD的中垂線,交BC延長線于E,求證:DE2=BE•CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O是△ACD的外接圓,AB是直徑,過點D作直線DE∥AB,過點B作直線BE∥AD,兩直線交于點E,如果∠ACD=45°,⊙O的半徑是3cm.
(1)請判斷DE與⊙O的位置關系,并說明理由;
(2)求圖中陰影部分的面積(結(jié)果用π表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知雙曲線y=
4
x
與直線y=kx-k的交點為A(m,2),求直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列分解因式正確的是( 。
A、-x2-y2=-(x+y)(x-y)
B、x2y+2xy+4y=y(x+2)2
C、49x2-x2y2=(xy+7x)(xy-7x)
D、16x2+4y2-16xy=4(2x-y)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

比較大。
6
 
 
5
2

查看答案和解析>>

同步練習冊答案