【題目】自從新冠肺炎疫情爆發(fā),我國高度重視并采取了強(qiáng)有力的措施進(jìn)行防控,像鐘南山爺爺和李蘭娟奶奶等無數(shù)白衣天使為保衛(wèi)大家的安全奮斗在抗疫一線. 武漢是疫情最先爆發(fā)的地區(qū),“一方有難,八方支援”是中華傳統(tǒng)美德,為了幫助武漢人民盡快度過難關(guān),某校七年級(jí)全體同學(xué)參加了捐款活動(dòng).現(xiàn)隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示:
(1)在本次調(diào)查中,一共抽查了_________名學(xué)生;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算在扇形統(tǒng)計(jì)圖中,“捐款 20元”對(duì)應(yīng)的圓心角度數(shù)是 度;
(3)在七年級(jí)600名學(xué)生中,捐款15元以上(不含15元)的學(xué)生估計(jì)有多少人?
【答案】(1)50;(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖見解析,50.4;(3)132人.
【解析】
(1)由題意可得捐款15元的學(xué)生數(shù)和所占百分比分別為14和28%,再用14÷28%即可;
(2)用(1)求得的人數(shù)減去其他捐款的學(xué)生數(shù)即可;用捐款20元的學(xué)生數(shù)除以學(xué)生總數(shù)求得其所占的百分比,再乘以360°即可;
(3)先在樣本中求得捐款15元以上學(xué)生的百分比,然后再乘以七年級(jí)學(xué)生總數(shù)即可.
(1)由題意得捐款15元的學(xué)生數(shù)和所占百分比分別為14和28%,則抽查學(xué)生數(shù)為:14÷28%=50人.
故答案為50;
(2)由題意得:捐款10元的學(xué)生數(shù)為:50-9-14-7-4=16;
故補(bǔ)全統(tǒng)計(jì)圖如圖:
“捐款 20元”對(duì)應(yīng)的圓心角度數(shù)為×360°=50.4°;
故答案為50.4;
(3)樣本中捐款15元以上(不含15元)的比例為,
則七年級(jí)600名學(xué)生中,捐款15元以上(不含15元)的學(xué)生數(shù)估計(jì)有:600×=132人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點(diǎn)
(1)求點(diǎn)A、B坐標(biāo)和∠BAO度數(shù)
(2)點(diǎn)C、D分別是線段OA、AB上一動(dòng)點(diǎn)(不與端點(diǎn)重合),且CD=DA,設(shè)線段OC的長(zhǎng)度為x ,,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式以及定義域
(3)點(diǎn)C、D分別是射線OA、射線BA上一動(dòng)點(diǎn),且CD=DA,當(dāng)ΔODB為等腰三角形時(shí),求C的坐標(biāo)(第(3)小題直接寫出分類情況和答案,不用過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 . 其中正確的結(jié)論是( )
A.①②
B.①③
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)閱讀內(nèi)容,在括號(hào)內(nèi)填寫推理依據(jù).
如果兩條平行線被三條直線所截,那么一對(duì)內(nèi)錯(cuò)角的角平分線一定互相平行.
已知:AB∥CD,EM平分∠AEF,FN平分∠EFD
求證: EM∥FN
證明:
∵AB∥CD
∴∠AEF=∠DFE ( )
∵EM平分∠AEF
∴∠MEF=∠ AEF ( )
∵FN平分∠EFD
∴∠EFN=∠ EFD ( )
∴∠MEF=∠ EFN
∴ EM ∥FN ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的直徑為18,cosB= ,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形的底邊長(zhǎng)為,面積是, 腰的垂直平分線分別交邊于點(diǎn).若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:
①c>0;
②若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;
③2a﹣b=0;
④ <0,
其中,正確結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊的邊 上一點(diǎn),是延長(zhǎng)線上一點(diǎn),連接交于,過點(diǎn)作于點(diǎn).證明下列結(jié)論:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分線交AC于點(diǎn)D,E是AB上一點(diǎn),且BE=BC,CF∥ED交BD于點(diǎn)F,連接EF,ED.
(1)求證:四邊形CDEF是菱形.
(2)當(dāng)∠ACB= 度時(shí),四邊形CDEF是正方形,請(qǐng)給予證明;并求此時(shí)正方形的邊長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com