【題目】矩形紙片ABCD,AB=4,BC=12,E、F分別是AD、BC邊上的點(diǎn),ED=3.將矩形紙片沿EF折疊,使點(diǎn)C落在AD邊上的點(diǎn)G處,點(diǎn)D落在點(diǎn)H處.
(1)矩形紙片ABCD的面積為
(2)如圖1,連結(jié)EC,四邊形CEGF是什么特殊四邊形,為什么?
(3)M,N是AB邊上的兩個動點(diǎn),且不與點(diǎn)A,B重合,MN=1,求四邊形EFMN周長的最小值.(計(jì)算結(jié)果保留根號)
【答案】(1)48;(2)四邊形CEGF是菱形,理由見詳解;(3)四邊形EFMN周長的最小值為.
【解析】
(1)矩形面積=長×寬,即可得到答案,
(2)利用對角線互相垂直平分的四邊形是菱形進(jìn)行證明,先證對角線相互垂直,再證對角線互相平分.
(3)明確何時四邊形的周長最小,利用對稱、勾股定理、三角形相似,分別求出各條邊長即可.
解:(1)S矩形ABCD=ABBC=12×4=48,
故答案為:48.
(2)四邊形CEGF是菱形,
證明:連接CG交EF于點(diǎn)O,
由折疊得:EF⊥CG,GO=CO,
∵ABCD是矩形,
∴AD∥BC,
∴∠OGE=∠OCF,∠GEO=∠CFO
∴△GOE≌△COF(AAS),
∴OE=OF
∴四邊形CEGF是菱形.
因此,四邊形CEGF是菱形.
(3)作F點(diǎn)關(guān)于點(diǎn)B的對稱點(diǎn)F1,則NF1=NF,
當(dāng)NF1∥EM時,四邊形EFMN周長最小,
設(shè)EC=x,由(2)得:GE=GF=FC=x,
在Rt△CDE中,∵ED2+DC2=EC2,
∴32+42=EC2,
∴EC=5=GE=FC=GF,
在Rt△GCD中,,
∴OC=GO=,
在Rt△COE中,,
∴EF=2OE=,
當(dāng)NF1∥EM時,易證△EAM∽△F1BN,
∴,
設(shè)AM=y,則BN=4-1-y=3-y,
∴,解得:,
此時,AM=,BN=,
由勾股定理得:
,
,
∴四邊形EFMN的周長為:
故四邊形EFMN周長的最小值為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,∠C=90°.
(1)如圖1,在邊BC上求作點(diǎn)P,使得點(diǎn)P到AB的距離等于點(diǎn)P到點(diǎn)C的距離.(尺規(guī)作圖,保留痕跡)
(2)如圖2,請利用沒有刻度的直尺和圓規(guī)在線段AB上找一點(diǎn)F,使得點(diǎn)F到AC的距離等于FB(注:不寫作法,保留痕跡,對圖中涉及到點(diǎn)用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,過點(diǎn)A作AD⊥l,過點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.
(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).
(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點(diǎn)M,N②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)P③作射線AP,交邊CD于點(diǎn)Q,若DQ=2QC,BC=2,則平行四邊形ABCD的周長為( ).
A.6B.8C.10D.12.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實(shí)數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論: ①方程x2+2x﹣8=0是倍根方程;
②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.
上述結(jié)論中正確的有( )
A. ①② B. ③④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長線于點(diǎn)F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=,求陰影區(qū)域的面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是將拋物線y=-x2 平移后得到的拋物線,其對稱軸為x=1,與x軸的一個交點(diǎn)為A(-1,0) ,另一交點(diǎn)為B,與y軸交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)N 為拋物線上一點(diǎn),且BC⊥NC,求點(diǎn)N的坐標(biāo);
(3)點(diǎn)P是拋物線上一點(diǎn),點(diǎn)Q是一次函數(shù)y=x+的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)P、Q是否存在?若存在,分別求出點(diǎn)P、Q的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O在直線PQ上,過點(diǎn)O作射線OC,使∠POC=130°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.
(1)如圖①所示,將直角三角板AOB的一邊OA與射線OP重合,則∠BOC=________°.
(2)將圖①中的直角三角板AOB繞點(diǎn)O旋轉(zhuǎn)一定角度得到如圖②所示的位置,若OA平分∠POC,求∠BOQ的度數(shù).
(3)將圖①中的直角三角板AOB繞點(diǎn)O旋轉(zhuǎn)一周,存在某一時刻恰有OB⊥OC,求出所有滿足條件的∠AOQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B(4,0) ,與過A點(diǎn)的直線相交于另一點(diǎn)D(3,) ,過點(diǎn)D作DC⊥x軸,垂足為C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P在線段OC上(不與點(diǎn)O,C重合),過P作PN⊥x軸,交直線AD于M,交拋物線于點(diǎn)N,連接CM,求△PCM 面積的最大值;
(3)若P 是x 軸正半軸上的一動點(diǎn),設(shè)OP 的長為t.是否存在t,使以點(diǎn)M,C,D,N 為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com