【題目】填寫推理理由,將過程補(bǔ)充完整:
如圖,,.求證:.
證明:∵(已知),
∴___________(______________________________).
∵(已知),
∴_________(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).
∴__________=(_________________________________)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“非常時(shí)期,非常的愛”征文比賽,已知每篇參賽征文成績(jī)記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了他們的成績(jī),并繪制了如下不完整的兩幅統(tǒng)計(jì)圖表.
請(qǐng)根據(jù)以上信息,解決下列問題:
(1)征文比賽成績(jī)頻數(shù)分布表中的值是_______,的值是_______;
(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖;
(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生課外活動(dòng),某校積極開展社團(tuán)活動(dòng),學(xué)生可根據(jù)自己的愛好選擇一項(xiàng),已知該校開設(shè)的體育社團(tuán)有:A:籃球,B:排球C:足球;D:羽毛球,E:乒乓球.李老師對(duì)某年級(jí)同學(xué)選擇體育社團(tuán)情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖),則以下結(jié)論不正確的是( )
A.選科目E的有5人
B.選科目D的扇形圓心角是72°
C.選科目A的人數(shù)占體育社團(tuán)人數(shù)的一半
D.選科目B的扇形圓心角比選科目D的扇形圓心角的度數(shù)少21.6°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買2個(gè)足球和3個(gè)籃球共需340元,購買5個(gè)足球和2個(gè)籃球共需410元.
(1)購買一個(gè)足球、一個(gè)籃球各需多少元?
(2)根據(jù)學(xué)校的實(shí)際情況,需購買足球和籃球共96個(gè),并且總費(fèi)用不超過5720元.問最多可以購買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1,O2,O3,… 組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2019秒時(shí),點(diǎn)P的坐標(biāo)是________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AC為直徑作⊙O交BC于點(diǎn)D,交AB于點(diǎn)G,且D是BC中點(diǎn),DE⊥AB,垂足為E,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:直線EF是⊙O的切線;
(2)若CF=3,cosA=0.4,求出⊙O的半徑和BE的長(zhǎng);
(3)連接CG,在(2)的條件下,求CG:EF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無縫隙無重合的四邊形EFGH,EH=12cm,EF=l6cm則邊AD的長(zhǎng)是( )
A.12cmB.16cmC.20cmD.24cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:某數(shù)學(xué)興趣小組把兩個(gè)等腰直角三角形的直角頂點(diǎn)重合,發(fā)現(xiàn)了一些有趣的結(jié)論.
結(jié)論一:
(1)如圖1,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,連接BD,CE,試說明△ADB≌△AEC;
結(jié)論二:
(2)如圖2,在(1)的條件下,若點(diǎn)E在BC邊上,試說明DB⊥BC;
應(yīng)用:
(3)如圖3,在四邊形ABCD中,∠ABC=∠ADC=90°,AB=CB,∠BAD+∠BCD=180°,連接BD,BD=7cm,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,點(diǎn)G是BC上的任意一點(diǎn),DE⊥AG于E,BF∥DE,交AG于F.
求證:AF=BF+EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com