【題目】如圖,在ABC中,CH是外角∠ACD的平分線,BH是∠ABC的平分線,∠A =58°,求∠H的度數(shù).

【答案】

【解析】試題分析:先根據(jù)三角形內(nèi)角和定理及∠A=58°求出∠ABC+ACB的度數(shù),再根據(jù)角平分線的定義及三角形外角的性質(zhì)用∠AABC、ACB表示出∠BCH及∠HBC的度數(shù),再利用三角形內(nèi)角和定理即可求出∠H的度數(shù).

試題解析:∠A=58°,∴∠ABC+ACB=180°A=180°58°=122°…

BH是∠ABC的平分線,∴∠HBC=ABC,

∵∠ACDABC的外角,CH是外角∠ACD的角平分線,

∴∠ACH= (A+ABC),

∴∠BCH=ACB+ACH=ACB+ (A+ABC),

∵∠H+HBC+ACB+ACH=180°

∴∠H+ABC+ACB+ (A+ABC)=180°,即∠H+(ABC+ACB)+ A=180°…,

把①代入②得,H+122°+58°=180°,

∴∠H=29°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船以30km/h的速度沿既定航線由南向北航行,途中接到臺(tái)風(fēng)警報(bào),某臺(tái)風(fēng)中心正以10km/h的速度由東向西移動(dòng),距臺(tái)風(fēng)中心200km的圓形區(qū)域(包括邊界)都屬臺(tái)風(fēng)影響區(qū),當(dāng)這艘輪船接到臺(tái)風(fēng)警報(bào)時(shí),它與臺(tái)風(fēng)中心的距離BC=500km,此時(shí)臺(tái)風(fēng)中心與輪船既定航線的最近距離AB=300km.

(1)如果這艘船不改變航向,那么它會(huì)不會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū)?

(2)如果你認(rèn)為這艘輪船會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū),那么從接到警報(bào)開始,經(jīng)過多長(zhǎng)時(shí)間它就會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū)?

(3)假設(shè)輪船航向不變,輪船航行速度不變,求受到臺(tái)風(fēng)影響的時(shí)間為多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC,△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.

(1)在圖①中,請(qǐng)你通過觀察、測(cè)量、猜想,寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;

(2)將△EFP沿直線l向左平移到圖②的位置時(shí),EP交AC于點(diǎn)Q,連接AP,BQ,猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,請(qǐng)證明你的猜想;

(3)將△EFP沿直線l向左平移到圖③的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連接AP,BQ,你認(rèn)為(2)中所猜想的BQ與AP的數(shù)量關(guān)系與位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī).這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

進(jìn)價(jià)(元/部)

4400

2000

售價(jià)(元/部)

5000

2500

該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需14.8萬(wàn)元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.7萬(wàn)元.(毛利潤(rùn)=(售價(jià)一進(jìn)價(jià))×銷售量)

(Ⅰ)該商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種手機(jī)各多少部?

(II)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的3倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過156萬(wàn)元,該商場(chǎng)應(yīng)該怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,角平分線AD、BE、CF相交于點(diǎn)H,過H點(diǎn)作HGAC,垂足為G,那么∠AHE和∠CHG的大小關(guān)系為( 。

A. AHE>∠CHG B. AHE<∠CHG C. AHE=CHG D. 不一定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長(zhǎng)的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解家長(zhǎng)關(guān)注孩子成長(zhǎng)方面的狀況,學(xué)校開展了針對(duì)學(xué)生家長(zhǎng)的“您最關(guān)心孩子哪方面成長(zhǎng)”的主題調(diào)查,調(diào)查設(shè)置了“健康安全”、“日常學(xué)習(xí)”、“習(xí)慣養(yǎng)成”、“情感品質(zhì)”四個(gè)項(xiàng)目,并隨機(jī)抽取甲、乙兩班共100位學(xué)生家長(zhǎng)進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,繪制了如圖不完整的條形統(tǒng)計(jì)圖.
(1)補(bǔ)全條形統(tǒng)計(jì)圖.
(2)若全校共有3600位學(xué)生家長(zhǎng),據(jù)此估計(jì),有多少位家長(zhǎng)最關(guān)心孩子“情感品質(zhì)”方面的成長(zhǎng)?
(3)綜合以上主題調(diào)查結(jié)果,結(jié)合自身現(xiàn)狀,你更希望得到以上四個(gè)項(xiàng)目中哪方面的關(guān)注和指導(dǎo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(-a,a)(a>0),點(diǎn)B(-a-4,a+3),C為該直角坐標(biāo)系內(nèi)的一點(diǎn),連結(jié)AB,OC.若ABOCAB=OC,則點(diǎn)C的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△中,=,點(diǎn) 邊上,連接,則添加下列哪一個(gè)條件后,仍無(wú)法判定△與△全等(  )

A. B. C. =∠ D. =∠

查看答案和解析>>

同步練習(xí)冊(cè)答案