一次函數(shù)y=x-2不經(jīng)過
 
象限.
考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系
專題:數(shù)形結(jié)合
分析:根據(jù)k>0,b<0可判斷一次函數(shù)圖象在第一、三、四象限,于是得到它不經(jīng)過第二象限.
解答:解:∵k=1>0,
∴一次函數(shù)圖象經(jīng)過第一、三象限;
∵b=-2<0,
∴一次函數(shù)圖象與y軸的交點(diǎn)在x軸下方,
∴一從函數(shù)圖象經(jīng)過第一、三、四象限,不經(jīng)過第二象限.
故答案為:第二.
點(diǎn)評(píng):本題考查了一次函數(shù)與系數(shù)的關(guān)系:由于y=kx+b與y軸交于(0,b),當(dāng)b>0時(shí),(0,b)在y軸的正半軸上,直線與y軸交于正半軸;當(dāng)b<0時(shí),(0,b)在y軸的負(fù)半軸,直線與y軸交于負(fù)半軸.k>0,b>0?y=kx+b的圖象在第一、二、三象限;k>0,b<0?y=kx+b的圖象在第一、三、四象限;k<0,b>0?y=kx+b的圖象在第一、二、四象限;k<0,b<0?y=kx+b的圖象在第二、三、四象限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

△ABC的位置如圖所示,請(qǐng)?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使得A、B兩點(diǎn)的坐標(biāo)分別為A(2,0)、B(1,-3),作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的△A1B1C1,并寫出C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)C為拋物線y=
1
2
x2-
3
2
x-2與x軸的兩個(gè)交點(diǎn)A、B(A點(diǎn)在B點(diǎn)的左邊)和拋物線上的一點(diǎn)P(在對(duì)稱軸的右側(cè))構(gòu)成Rt△,則點(diǎn)P的坐標(biāo)為
 
;現(xiàn)將題中的拋物線向左或向右平移t個(gè)單位長度(0<t<
5
2
),點(diǎn)P、C的對(duì)應(yīng)點(diǎn)分別記為P′、C′,當(dāng)依次首尾相連接A、B、P′、C′四點(diǎn)構(gòu)成的多邊形周長最小時(shí),t的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一段拋物線y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將拋物線C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,直至得Cn,若P(3,m)在第11段拋物線C11上,則m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組
(1)
x-2y=5
5x+4y=-3

(2)
x+y=4
2x-y=-1.
(用作圖方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
(1)
1
x-3
+
x
3-x
=2

(2)
1
x-1
-
2
x+1
=
4
x2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明手中有3000元壓歲錢,爸媽要他學(xué)習(xí)投資理財(cái).小明想買年利率為2.89%的三年期國庫卷,到銀行時(shí),銀行所剩國庫卷已不足3000元,小明全部買下著國庫卷后,余下的錢改成三年定期銀行存款,年利率為2.7%,且到期要交納20%的利息稅,三年后,小明得到的本息和為3233.82元,小明到底買了多少的國庫卷,在銀行存款又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解下列方程或方程組
(1)
2(x+1)
3
=
5(x+1)
6
-1

(2)
x
2
-
y+1
3
=1
3x+2y=10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)-3-[-2-(-8)×(-0.125)]
(2)-24÷(-2
2
3
2+5
1
2
×(-
1
6
)-0.25.

查看答案和解析>>

同步練習(xí)冊答案