【題目】揚(yáng)州某風(fēng)景區(qū)門票價(jià)格如圖所示,有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在端午節(jié)期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為100人,若乙團(tuán)隊(duì)人數(shù)不超過(guò)40人,甲團(tuán)隊(duì)人數(shù)不超過(guò)80人,設(shè)甲團(tuán)隊(duì)人數(shù)為人,如果甲、乙兩團(tuán)隊(duì)分別購(gòu)買門票,兩團(tuán)隊(duì)門票款之和為元.
(1)直接寫出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)計(jì)算甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約多少錢?
(3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個(gè)月實(shí)行門票打五折的優(yōu)惠(打折期間不售團(tuán)體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經(jīng)過(guò)調(diào)研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運(yùn)營(yíng)成本也隨之增加,景區(qū)運(yùn)營(yíng)成本(萬(wàn)元)與兩個(gè)月游客總?cè)藬?shù)(萬(wàn)人)之間滿足函數(shù)關(guān)系式:;兩個(gè)月游客總?cè)藬?shù)(萬(wàn)人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤(rùn),景區(qū)決定通過(guò)網(wǎng)絡(luò)預(yù)約購(gòu)票的方式控制淡季每天游客數(shù),請(qǐng)問(wèn)景區(qū)的決定是否正確?并說(shuō)明理由.(利潤(rùn)門票收入景區(qū)運(yùn)營(yíng)成本)
【答案】(1)當(dāng)時(shí),;(2)1800元;(3)利潤(rùn)隨人數(shù)的增大而減小,故景區(qū)的決定是正確的
【解析】
(1)由乙團(tuán)隊(duì)人數(shù)不超過(guò)40人,討論的取值范圍,得到函數(shù)解析式;
(2)由(1)在甲團(tuán)隊(duì)人數(shù)不超過(guò)80人時(shí),討論的最大值與聯(lián)合購(gòu)票費(fèi)用相減即可;
(3)根據(jù)題意列函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
解:(1)由題意乙團(tuán)隊(duì)人數(shù)為人,則,,
當(dāng)時(shí),;
(2)由(1)甲團(tuán)隊(duì)人數(shù)不超過(guò)80人,
∵,∴隨增大而減小,
當(dāng)時(shí),,
當(dāng)兩團(tuán)隊(duì)聯(lián)合購(gòu)票時(shí)購(gòu)票費(fèi)用為,
甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約元;
(3)正確.設(shè)利潤(rùn)為元,根據(jù)題意得,,
∵,∴拋物線的開口向下,有最大值,
∵,
∴,隨的增大而減小,
∴利潤(rùn)隨人數(shù)的增大而減小,故景區(qū)的決定是正確的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購(gòu)進(jìn)A、B兩種型號(hào)的低排量汽車,其中A型汽車的進(jìn)貨單價(jià)比B型汽車的進(jìn)貨單價(jià)多2萬(wàn)元;花50萬(wàn)元購(gòu)進(jìn)A型汽車的數(shù)量與花40萬(wàn)元購(gòu)進(jìn)B型汽車的數(shù)量相同.
(1)求A、B兩種型號(hào)汽車的進(jìn)貨單價(jià);
(2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺(tái))與售價(jià)x(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系yA=﹣x+20,B型汽車的每周銷量yB(臺(tái))與售價(jià)x(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系yB=﹣x+14,A型汽車的售價(jià)比B型汽車的售價(jià)高2萬(wàn)元/臺(tái).問(wèn)A、B兩種型號(hào)的汽車售價(jià)各為多少時(shí),每周銷售這兩種汽車的總利潤(rùn)最大?最大利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需170元,購(gòu)買2個(gè)足球和5個(gè)籃球共需260元.
(1)購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?(提示:列方程組解答)
(2)根據(jù)該中學(xué)的實(shí)際情況,需一次性購(gòu)買足球和籃球共46個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)1480元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?(提示:列不等式解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小劉對(duì)本班同學(xué)的業(yè)余興趣愛好進(jìn)行了一次調(diào)查,她根據(jù)采集到的數(shù)據(jù),繪制了下面的圖1和圖2.
請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在圖1中,將“書畫”部分的圖形補(bǔ)充完整;
(2)在圖2中,求出“球類”部分所對(duì)應(yīng)的圓心角的度數(shù),并分別寫出愛好“音樂”、“書畫”、“其它”的人數(shù)占本班學(xué)生數(shù)的百分?jǐn)?shù);
(3)觀察圖1和圖2,你能得出哪些結(jié)論(只要寫出一條結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,DC=8,現(xiàn)將四邊形BEGC沿折痕EG(G,E分別在DC,AB邊上)折疊,其頂點(diǎn)B,C分別落在邊AD上和邊DC的上部,其對(duì)應(yīng)點(diǎn)設(shè)為F,N點(diǎn),且FN交DC于M.
特例體驗(yàn):
(1)當(dāng)FD=AF時(shí),△FDM的周長(zhǎng)是多少?
類比探究:
(2)當(dāng)FD≠AF≠0時(shí),△FDM的周長(zhǎng)會(huì)發(fā)生變化嗎?請(qǐng)證明你的猜想.
拓展延伸:
(3)同樣在FD≠AF≠0的條件下,設(shè)AF為x,被折起部分(即:四邊形FEGN)的面積為S,試用含x的代數(shù)式表示S,并問(wèn):當(dāng)x為何值時(shí),S=26?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市場(chǎng)將進(jìn)貨價(jià)為40元/件的商品按60元/件售出,每星期可賣出300件.市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元/件,每星期該商品要少賣出10件.
(1)請(qǐng)寫出該商場(chǎng)每月賣出該商品所獲得的利潤(rùn)y(元)與該商品每件漲價(jià)x(元)間的函數(shù)關(guān)系式;
(2)每月該商場(chǎng)銷售該種商品獲利能否達(dá)到6300元?請(qǐng)說(shuō)明理由;
(3)請(qǐng)分析并回答每件售價(jià)在什么范圍內(nèi),該商場(chǎng)獲得的月利潤(rùn)不低于6160元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過(guò)O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.
(1)求拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com