【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購進A、B兩種型號的低排量汽車,其中A型汽車的進貨單價比B型汽車的進貨單價多2萬元;花50萬元購進A型汽車的數(shù)量與花40萬元購進B型汽車的數(shù)量相同.

1)求A、B兩種型號汽車的進貨單價;

2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺)與售價x(萬元/臺)滿足函數(shù)關系yA=﹣x+20,B型汽車的每周銷量yB(臺)與售價x(萬元/臺)滿足函數(shù)關系yB=﹣x+14,A型汽車的售價比B型汽車的售價高2萬元/臺.問A、B兩種型號的汽車售價各為多少時,每周銷售這兩種汽車的總利潤最大?最大利潤是多少萬元?

【答案】1A、B兩種型號汽車的進貨單價為:10萬元、8萬元;(2A、B兩種型號的汽車售價各為14萬元、12萬元時,每周銷售這兩種汽車的總利潤最大,最大利潤是32萬元..

【解析】

1)由題意根據(jù)購進兩種型號的汽車數(shù)量相同列出分式方程即可求解;

2)由題意根據(jù)銷售利潤等于每臺汽車的利潤乘以銷售量列出二次函數(shù)關系即可求解.

解:(1)設B型汽車的進貨單價為x萬元,根據(jù)題意得,解得x8,

經(jīng)檢驗x8是原分式方程的根.

答:AB兩種型號汽車的進貨單價為:10萬元、8萬元.

2)設兩種汽車的總利潤為w萬元,根據(jù)題意得

w=(x+210[﹣(x+2+18]+x8)(﹣x+14

=﹣2x2+48x256

=﹣2x122+32

20,當x12時,w有最大值為32

答:AB兩種型號的汽車售價各為14萬元、12萬元時,每周銷售這兩種汽車的總利潤最大,最大利潤是32萬元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生的課余生活,某校記劃開展三種拓展課活動,分別是“文學賞析”,“趣味數(shù)學”,“科學實驗”等項目,要求每位學生自主選擇其中一項拓展課參加.隨機抽取該校各年段部分學生,對選擇拓展課的意向進行調査,將調查的結果制作成以下統(tǒng)計圖和不完整的統(tǒng)計表.

某校被調查學生選擇拓展課意向統(tǒng)計表

選擇意向

所占百分比

文學賞析

   

趣味數(shù)學

35%

科學實驗

   

其它

30%

1)該校有2000名學生,請你估計大約有多少名學生參加科學實驗拓展課,并補全統(tǒng)計表.

2)該校參加科學實驗拓展課的學生隨機分成A,B,C三個人數(shù)相同的班級.小慧和小明都參加科學實驗拓展課,求他們同班級的概率(畫樹狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結論:

a+b+c0;ab+c1abc0;④9a3b+c0;ca1.其中所有正確結論的序號是(  )

A.①②B.①③④C.①②③④D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,三角形的三條角平分線交于一點,這個點稱為三角形的內心(即三角形內切圓的圓心) . 現(xiàn)在規(guī)定,如果四邊形的四條角平分線交于一點,我們把這個點稱為“四邊形的內心”.

問題提出

1)如圖1,在ABC中,∠C=90°,點OABC的內心,若直線DE分別交邊AC、BC于點DE,且點O仍然為四邊形ABED的內心,這樣的直線DE可以畫多少條?請在圖1中畫出一條符合條件的直線DE,并簡要說明畫法.

問題探究

2)如圖2,在ABC中,∠C=90°, AC=3, BC=4,若滿足(1)中條件的一條直線DE // AB,求此時線段DE的長;

問題解決

3)如圖3,在ABC中,∠C=90° AC=3,BC=4,問滿足(1)中條件的線段DE是否存在最小值?如果存在,請求出這個值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A0,1),B4,2),C2,0).

1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;

2)將△ABC繞著點(﹣1,﹣1)旋轉180°得到△A2B2C2,畫出△A2B2C2;

3)線段B2C2可以看成是線段B1C1繞著平面直角坐標系中某一點逆時針旋轉得到,直接寫出旋轉中心的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點,若EF=EC,且EF⊥EC.

(1)求證:△AEF≌△DCE;

(2)若CD=1,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

(1)第1個等式:a1=; 第2個等式:a2=;

第3個等式:a3=; 第4個等式:a4=

用含有n的代數(shù)式表示第n個等式:an=___________=___________(n為正整數(shù));

(2)按一定規(guī)律排列的一列數(shù)依次為,1, , , ,…,按此規(guī)律,這列數(shù)中的第100個數(shù)是_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州某風景區(qū)門票價格如圖所示,有甲、乙兩個旅行團隊,計劃在端午節(jié)期間到該景點游玩,兩團隊游客人數(shù)之和為100人,若乙團隊人數(shù)不超過40人,甲團隊人數(shù)不超過80人,設甲團隊人數(shù)為人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為元.

1)直接寫出關于的函數(shù)關系式,并寫出自變量的取值范圍;

2)計算甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少錢?

3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個月實行門票打五折的優(yōu)惠(打折期間不售團體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經(jīng)過調研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運營成本也隨之增加,景區(qū)運營成本(萬元)與兩個月游客總人數(shù)(萬人)之間滿足函數(shù)關系式:;兩個月游客總人數(shù)(萬人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤,景區(qū)決定通過網(wǎng)絡預約購票的方式控制淡季每天游客數(shù),請問景區(qū)的決定是否正確?并說明理由.(利潤門票收入景區(qū)運營成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以O為原點的直角坐標系中,點A,C分別在x軸、y軸的正半軸上,點B在第一象限內,四邊形OABC是矩形,反比例函數(shù)yx>0)與AB相交于點D,與BC相交于點E,若BE=4CE,四邊形ODBE的面積是8,則k_____

查看答案和解析>>

同步練習冊答案