【題目】鴻運(yùn)達(dá)酒店客房部有三人間、雙人間和單人間客房收費(fèi)數(shù)據(jù)如下表:為吸引客源在“五一”黃金周進(jìn)行優(yōu)惠大酬賓,凡團(tuán)體入住一率五折優(yōu)惠。一個(gè)50人的旅游團(tuán)在5月2日到該酒店住宿,租住了一些三人間、雙人間普通客房,并且每個(gè)客房剛好住滿,一天一共花去住宿費(fèi)1510元。
普通間(元/人/天) | 豪華間(元/人/天) | 貴賓間(元/人/天) | |
三人間 | 50 | 100 | 500 |
雙人間 | 70 | 150 | 800 |
單人間 | 100 | 200 | 1500 |
(1)該旅游團(tuán)三人間,雙人間普通客房各住了多少間?
(2)如果你作為旅游團(tuán)長(zhǎng),你認(rèn)為上面這種住宿方式是不是費(fèi)用最少?
【答案】(1)三人間、雙人間普通客房各住了8間,13間.(2)費(fèi)用最少應(yīng)是1270元.
【解析】
(1)設(shè)三人間、雙人間普通客房各住了x,y間,根據(jù)團(tuán)體有50人和花去1510元,可列方程組求解.
(2)費(fèi)用少應(yīng)讓人盡可能都的住三人間普通客房,從而可求出費(fèi)用進(jìn)行比較.
(1)設(shè)三人間、雙人間普通客房各住了x,y間,
根據(jù)題意得
解得
答:三人間、雙人間普通客房各住了8間,13間.
(2)費(fèi)用少應(yīng)讓人盡可能都的住三人間普通客房.
費(fèi)用最少應(yīng)是:48人住三人間普通客房有16間,費(fèi)用為1200元,二個(gè)住雙人間普通客房一間,費(fèi)用為70元.總費(fèi)用為1270元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,E.F分別是兩組對(duì)邊延長(zhǎng)線的交點(diǎn),EG.FG分別平分.,若,,則的大小是_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AOBC的頂點(diǎn)O(0,0),A(﹣1,2),點(diǎn)B在x軸正半軸上按以下步驟作圖:①以點(diǎn)O為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊OA,OB于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心,大于DE的長(zhǎng)為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)F;③作射線OF,交邊AC于點(diǎn)G,則點(diǎn)G的坐標(biāo)為( 。
A. (﹣1,2) B. (,2) C. (3﹣,2) D. (﹣2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名學(xué)生進(jìn)行射擊練習(xí),兩人在相同條件下各射擊10次,將射擊結(jié)果作統(tǒng)計(jì)分析如下:
命中環(huán)數(shù) | 5 | 6 | 7 | 8 | 9 | 10 |
甲命中環(huán)數(shù)的次數(shù) | 1 | 4 | 2 | 1 | 1 | 1 |
乙命中環(huán)數(shù)的次數(shù) | 1 | 2 | 4 | 2 | 1 | 0 |
平均數(shù) | 眾數(shù) | 方差 | |
甲 | 7 | 6 | 2.2 |
乙 |
(1)請(qǐng)你計(jì)算乙學(xué)生的相關(guān)數(shù)據(jù)并填入表中;
(2)根據(jù)你所學(xué)的統(tǒng)計(jì)學(xué)知識(shí),利用上述某些數(shù)據(jù)評(píng)價(jià)甲、乙兩人的射擊水平。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在數(shù)軸上點(diǎn)表示的數(shù)為-2,0,6.點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為.
(1)請(qǐng)直接寫(xiě)出結(jié)果, . . .
(2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為,請(qǐng)化簡(jiǎn)式子,(寫(xiě)出化簡(jiǎn)過(guò)程)
(3)點(diǎn)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).請(qǐng)問(wèn):的值是否隨著運(yùn)動(dòng)時(shí)間的變化而變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為.
(1)的長(zhǎng)為_______;
(2)如果點(diǎn)到點(diǎn)、點(diǎn)的距離相等,那么的值是_______;
(3)若點(diǎn)到點(diǎn)、點(diǎn)的距離之和是8,那么的值是_______;
(4)如果點(diǎn)以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)向左運(yùn)動(dòng),同時(shí)點(diǎn)和點(diǎn)分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)分鐘時(shí)點(diǎn)P到點(diǎn)、點(diǎn)的距離相等,那么的值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB、CD被直線EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度數(shù).
解:因?yàn)?/span>∠1=∠2=80°(已知),
所以AB∥CD__________
所以∠BGF+∠3=180°__________
因?yàn)?/span>∠2+∠EFD=180°(鄰補(bǔ)角的性質(zhì)).
所以∠EFD=________.(等式性質(zhì)).
因?yàn)?/span>FG平分∠EFD(已知).
所以∠3=________∠EFD(角平分線的性質(zhì)).
所以∠3=________.(等式性質(zhì)).
所以∠BGF=________.(等式性質(zhì)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com