【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫⊙O分別交ABACE,F,連接EF,則線段EF長度的最小值為______

【答案】3

【解析】

由垂線段的性質(zhì)可知,當(dāng)AD為△ABC的邊BC上的高時(shí),直徑最短,如圖,連接OE,OF,過O點(diǎn)作OHEF,垂足為H,由RtADB為等腰直角三角形,則AD=BD=1,即此時(shí)圓的直徑為1,再根據(jù)圓周角定理可得到∠EOH=60°,則在RtEOH中,利用銳角三角函數(shù)可計(jì)算出EH=,然后根據(jù)垂徑定理即可得到EF=2EH

解:由垂線段的性質(zhì)可知,當(dāng)AD為△ABC的邊BC上的高時(shí),直徑最短,

如圖,連接OEOF,過O點(diǎn)作OHEF,垂足為H,

RtADB中,∠ABC=45°,AB=2,

AD=BD=2,即此時(shí)圓的直徑為2,

∵∠EOF=2BAC=120°,

而∠EOH=FOH,

∴∠EOH=60°,

RtEOH中,EH=OEsinEOH=sin60°=,

OHEF,

EH=FH

EF=2EH=3,

即線段EF長度的最小值為3

故答案為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,從一張腰長為60cm,頂角為120°的等腰三角形鐵皮OAB中剪出一個(gè)最大的扇形OCD,用此剪下的扇形鐵皮圍成一個(gè)圓錐的側(cè)面(不計(jì)損耗),則該圓錐的高為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校校本課程中心為了解該校學(xué)生喜歡校本課程的情況,采取抽樣調(diào)查的辦法,通過書法、陶藝、燈謎、足球四門課程的選報(bào)情況調(diào)查若干名學(xué)生的興趣愛好,要求每位同學(xué)只能選擇一門自己喜歡的課程,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息,解答下列問題:

1)在這次調(diào)查研究中,一共調(diào)查了   名學(xué)生,喜歡燈謎的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角是   度:

2)請補(bǔ)全頻數(shù)分布折線統(tǒng)計(jì)圖;

3)為了平衡各校本課程的人數(shù),需要從喜歡陶藝課程的甲、乙、丙3人中調(diào)整2人到燈謎課程,試用列表或樹狀圖的方法求“甲、乙兩人被同時(shí)調(diào)整到燈謎課程”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖,RtAB中,AC=BC,AB= 4cm.動(dòng)點(diǎn)D沿著ACB的方向從A點(diǎn)運(yùn)動(dòng)到B點(diǎn).DEAB,垂足為E.設(shè)AE長為cmBD長為cm(當(dāng)DA重 合時(shí),= 4;當(dāng)DB重合時(shí)=0).小云根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.下面是小云的探究過程,請補(bǔ)充完整:

1)通過取點(diǎn)、畫圖、測量,得到了的幾組值,如下表:

/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

/cm

4

3.5

3.2

2.8

2.1

1.4

0.7

0

補(bǔ)全上面表格,要求結(jié)果保留一位小數(shù).則__________;

2)在下面的網(wǎng)格中建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)DB=AE時(shí),AE的長度約為    cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DC是⊙O的直徑,點(diǎn)B在圓上,直線ABCD延長線于點(diǎn)A,且∠ABD=C

1)求證:AB是⊙O的切線;

2)若AB=4cm,AD=2cm,求tanA的值和DB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,CAB=60°,點(diǎn)O為斜邊AB上一點(diǎn),且OA=2,以OA為半徑的OBC相切于D,與AC交于點(diǎn)E,連接AD

1)求線段CD的長;

2)求ORtABC重疊部分的面積.(結(jié)果保留準(zhǔn)確值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2﹣2mx(m1)與x軸的另一個(gè)交點(diǎn)為A.過點(diǎn)P(﹣1,m)作直線PDx軸于點(diǎn)D,交拋物線于點(diǎn)B,BCx軸交拋物線于點(diǎn)C.

(1)當(dāng)m=2時(shí).

①求線段BC的長及直線AB所對應(yīng)的函數(shù)關(guān)系式;

②若動(dòng)點(diǎn)Q在直線AB上方的拋物線上運(yùn)動(dòng),求點(diǎn)Q在何處時(shí),QAB的面積最大?

③若點(diǎn)F在坐標(biāo)軸上,且PF=PC,請直接寫出符合條件的點(diǎn)F在坐標(biāo);

(2)當(dāng)m1時(shí),連接CA、CP,問m為何值時(shí),CACP?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是菱形ABCD對角線CA的延長線上任意一點(diǎn),以線段AE為邊作一個(gè)菱形AEFG,且菱形AEFG∽菱形ABCD,連接EB,GD

1)求證:EBGD;

2)若∠DAB60°AB2,AG,求GD的長.

查看答案和解析>>

同步練習(xí)冊答案