【題目】如圖,四邊形ABCD中,∠A = ∠B = 90°,AB邊上有一點(diǎn)E,CE,DE分別是∠BCD和∠ADC 的角平分線,如果ABCD的面積是12,CD = 8,那么AB的長度為_____.
【答案】3
【解析】
根據(jù)角平分線的定義求出∠ADE=∠CDE,∠DCE=BCE,求出∠DCE+∠CDE=90°,延長DE交CB的延長線于點(diǎn)F,求出△CDF是等腰三角形;求出DE=FE,根據(jù)全等三角形的判定得出△BEF≌△AED,得到AD=BF,故FC=AD+BC=CD,再根據(jù)等腰梯形的面積公式即可求解AB的長.
∵∠A = ∠B = 90°
∴AD∥BC,∠ADC+∠BCD=180
∵ED平分∠ADC,EC平分∠BCD,
∴∠ADE=∠CDE,∠DCE=BCE
∴∠DCE+∠CDE=90
∴DE⊥EC,
延長DE交CB的延長線于點(diǎn)F,
∵AD∥BC,DE是∠ADC的角平分線,
∴∠CDF=∠ADE=∠DFC,
∴CD=CF,
∴△CDF是等腰三角形;
∵DE⊥EC,
∴DE=FE,
在△BEF和△AED中
∴△BEF≌△AED(ASA),
∴AD=BF,
故FC=AD+BC=CD=8,
∵等腰梯形的面積為(AD+BC)×AB=12
即×8×AB=12
故AB=3.
故填:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請認(rèn)真閱讀下面的數(shù)學(xué)小探究系列,完成所提出的問題:
探究1:如圖1,在等腰直角三角形ABC中,,,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到線段BD,連接求證:的面積為提示:過點(diǎn)D作BC邊上的高DE,可證≌
探究2:如圖2,在一般的中,,,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到線段BD,連接請用含a的式子表示的面積,并說明理由.
探究3:如圖3,在等腰三角形ABC中,,,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到線段BD,連接試探究用含a的式子表示的面積,要有探究過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是的內(nèi)心,BO的延長線和的外接圓相交于D,連結(jié)DC、DA、OA、OC,四邊形OADC為平行四邊形.
求證:≌.
若,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系。
(1)B出發(fā)時(shí)與A相距 千米。
(2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí)。
(3)B出發(fā)后 小時(shí)與A相遇。
(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式。
(5)求出當(dāng) t≥1.5時(shí)B走的路程S與時(shí)間t的函數(shù)關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中能判斷△ABC為直角三角形的是( )
A.∠A +∠B = ∠CB.∠A = ∠B = ∠C
C.∠A-∠B = 90°D.∠A = ∠B = 3∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下關(guān)于x的各個(gè)多項(xiàng)式中,a,b,c,m,n均為常數(shù).
(1)根據(jù)計(jì)算結(jié)果填寫下表:
二次項(xiàng)系數(shù) | 一次項(xiàng)系數(shù) | 常數(shù)項(xiàng) | |
(2x + l)(x + 2) | 2 | 2 | |
(2x + 1)(3x - 2) | 6 | -2 | |
(ax + b)( mx + n) | am | bn |
(2)已知(x+ 3)2(x + mx +n)既不含二次項(xiàng),也不含一次項(xiàng),求m + n的值.
(3) 多項(xiàng)式M與多項(xiàng)式x2-3x + 1的乘積為2x4+ ax3 + bx2+ cx -3,則2 a +b + c的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB垂直平分線段CD(AB>CD),點(diǎn)E是線段CD延長線上的一點(diǎn),且BE=AB,連接AC,過點(diǎn)D作DG⊥AC于點(diǎn)G,交AE的延長線與點(diǎn)F.
(1)若∠CAB=α,則∠AFG= (用α的代數(shù)式表示);
(2)線段AC與線段DF相等嗎?為什么?
(3)若CD=6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB=10,AC=,BC 邊上的高 AD=6,則另一邊 BC 等于( )
A.10B.8C.6 或 10D.8 或 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=5,AC=4,∠B,∠C的平分線相交于點(diǎn)O,OM∥AB,ON∥AC分別與BC交于點(diǎn)M、N,則△OMN的周長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com