【題目】如圖所示的是一輛自行車的側(cè)面示意圖.已知車輪直徑為65 cm,車架中AC的長為42 cm,座桿AE的長為18 cm,點E,AC在同一條直線上,后軸軸心B與中軸軸心C所在直線BC與地面平行,∠C73°,求車座E到地面的距離EF(結(jié)果精確到l cm,參考數(shù)據(jù):sin 73°≈0.96,cos 73°≈0.29,tan 73°≈3.27)

【答案】90

【解析】試題分析:如圖所示,題中所求線段是EF,而DF=0.5×65=32.5為已知,所以只需求出ED,ED在直角三角形ECD中,且∠C=73°為已知,斜邊EC=60為已知,所以可用正弦的概念求出ED=60×sin73°≈60×0.96≈57.6,再加上32.5EF的長約為90cm.

試題解析:如圖,在Rt△EDC中,

CE=AE+AC=18+42=60(cm).

∵sin C=,

∴DE=CEsin C=60×sin73°≈60×0.96=57.6(cm).

又∵DF=×65=32.5(cm),

∴EF=DE+DF≈57.6+32.5≈90(cm).

即車座E到地面的距離EF約為90cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點是線段上的動點(點不重合),分別以為邊向線段的同一側(cè)作正和正.

1)請你判斷有怎樣的數(shù)量關(guān)系?請說明理由;

2)連接,相交于點,設(shè),那么的大小是否會隨點的移動而變化?請說明理由;

3)如圖2,若點固定,將繞點按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于),此時的大小是否發(fā)生變化?(只需直接寫出你的猜想,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某街道1000米的路面下雨時經(jīng)常嚴(yán)重積水.需改建排水系統(tǒng).市政公司準(zhǔn)備安排甲、乙兩個工程隊做這項工程,根據(jù)評估,有兩個施工方案:

方案一:甲、乙兩隊合作施工,那么12天可以完成;

萬案二:如果甲隊先做10天,剩下的工程由乙隊單獨施工,還需15天才能完成.

l)甲、乙兩隊單獨完成此項工程各需多少天?

2)方案一中,甲、乙兩隊實際各施工了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(﹣3+40+(﹣32+(﹣8

212﹣(﹣18+(﹣7

3)(+3)﹣(﹣5+(﹣2)﹣(﹣32

481.26293.8+8.74+111

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅家、學(xué)校、郵局、圖書館坐落在一條東西走向的大街上,依次記為A,BC,D,學(xué)校位于小紅家西150m,郵局位于小紅家東100m,圖書館位于小紅家西400m

1)用數(shù)軸表示A,B,C,D的位置;(以小紅家為原點)

2)一天小紅從家中去郵局寄信后,以每分鐘25m的速度往圖書館方向走了16分鐘,這時小紅距圖書館和學(xué)校各多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張丘建,我國南北朝時期(約公元5世紀(jì))著名的數(shù)學(xué)家,著有《張丘建算經(jīng)》.一次宴會上,張丘建出了一道題:“現(xiàn)有一只鹿向西跑,當(dāng)獵人追至處時,與鹿所在的處還差36步(古代:1=300步);鹿突然向北跑,此時騎馬的獵人就沿著追去,追了50步至處與鹿所在的位置處還差10步(點、、在同一直線上).如果此鹿不向北轉(zhuǎn),而繼續(xù)向西跑,獵人需要追多遠(yuǎn)才能追上此鹿?”,已知單位時間內(nèi)鹿跑的路程和獵人騎馬追趕的路程的比值是定值,請解答這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海濱浴場東西走向的海岸線可以近似看作直線l(如圖).救生員甲在A處的瞭望臺上觀察海面情況,發(fā)現(xiàn)其正北方向的B處有人發(fā)出求救信號,他立即沿AB方向徑直前往救援,同時通知正在海岸線上巡邏的救生員乙.乙馬上從C處入海,徑直向B處游去.甲在乙入海10秒后趕到海岸線上的D處,再向B處游去.若CD=40米,B在C的北偏東35°方向,甲乙的游泳速度都是2米/秒.問誰先到達(dá)B處?請說明理由.

(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly2x4x軸于A,交y軸于B

(1) 直接寫出直線l向右平移2個單位得到的直線l1的解析式_______;

(2) 直接寫出直線l關(guān)于y=-x對稱的直線l2的解析式_______

(3) P在直線l上,若SOAP2SOBP,求P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果,且.下列說法中,正確的個數(shù)是( )

; ②如果,那么 ;③ ; ④

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案